- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
I am looking at the following exercise:
That'a what I have tried:
Could you tell me if it is right or if I have done something wrong? (Thinking)
I am looking at the following exercise:
- Let $p$ a prime and $p \nmid a$,prove that $a^{p-2}b$ is a solution of $\displaystyle{ax \equiv b \pmod p}$
Solve: $2x \equiv 1 \pmod{31} \\ 3x \equiv 17 \pmod{29}$
- If $(a,n)=1$,prove that $a^{\phi(n)-1}b$ is a solution of $\displaystyle{ax \equiv b \pmod n}$
Solve: $3x \equiv 5 \pmod{26} \\ 10x \equiv 21 \pmod{49}$
That'a what I have tried:
$$(a,p)=1$$
So,from Fermat's theorem:
$$a^{p-1} \equiv 1 \pmod p \Rightarrow a \cdot a^{p-2}b \equiv b \pmod p$$
$$\text{So, } a^{p-2}b \text{ is a solution of } ax \equiv b \pmod p$$
$$2x \equiv 1 \pmod {31}$$
$$\text{As } (2,31)=1,\text{ there is exactly one solution,and according to the exercise,it is this one: } 2^{31-2}=2^{29}$$
$$x \equiv 2^{29}\pmod {31} \Rightarrow x \equiv 16 \pmod{31}$$$$3x \equiv 17 \pmod{29}, (3,17)=1, \text{ so there is exactly one solution,and according to the exercise,it is this one: } 3^{29-2} \cdot 17$$
$$x \equiv 3^{29-2} \cdot 17 \pmod{19} \Rightarrow x \equiv 12 \pmod{29}$$
- $$(a,n)=1, \text{ so from Euler's theorem: } a^{\phi(n)} \equiv 1 \pmod n$$
$$a \cdot a^{\phi(n)-1} \equiv 1 \pmod n \Rightarrow a \cdot b a^{\phi(n)-1} \equiv b \mod n$$
$$So, b a^{\phi(n)-1} \text{ is a solution of } ax \equiv b \pmod n$$
$$3x \equiv 5 \pmod{26} , (3,16=1), \text{ so the only solution is : } 3^{\phi(26)-1}5=3^{11} \cdot 5 \equiv 19 \pmod{26} $$
$$10x \equiv 21 \pmod{49}, (10,49)=1, \text{ so the only solution is : } 10^{\phi(49)-1}21=10^{41} \cdot 21\equiv 10 \pmod{49}$$
Could you tell me if it is right or if I have done something wrong? (Thinking)
Last edited: