MHB Show that it's a solution and solve the primarities...

  • Thread starter Thread starter evinda
  • Start date Start date
AI Thread Summary
The discussion focuses on proving that \( a^{p-2}b \) and \( a^{\phi(n)-1}b \) are solutions to the congruences \( ax \equiv b \pmod{p} \) and \( ax \equiv b \pmod{n} \) respectively, using Fermat's and Euler's theorems. The user initially provides solutions for specific modular equations but is informed that they made two calculation errors. The correct solutions for the equations \( 3x \equiv 17 \pmod{29} \) and \( 10x \equiv 21 \pmod{49} \) are clarified as \( x \equiv 2 \pmod{29} \) and \( x \equiv 7 \pmod{49} \). The conversation highlights the importance of accurate calculations in modular arithmetic. Overall, the user demonstrates a solid understanding of the underlying theorems but needs to correct specific computational mistakes.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

I am looking at the following exercise:

  • Let $p$ a prime and $p \nmid a$,prove that $a^{p-2}b$ is a solution of $\displaystyle{ax \equiv b \pmod p}$
    Solve: $2x \equiv 1 \pmod{31} \\ 3x \equiv 17 \pmod{29}$
  • If $(a,n)=1$,prove that $a^{\phi(n)-1}b$ is a solution of $\displaystyle{ax \equiv b \pmod n}$
    Solve: $3x \equiv 5 \pmod{26} \\ 10x \equiv 21 \pmod{49}$

That'a what I have tried:


  • $$(a,p)=1$$
    So,from Fermat's theorem:

    $$a^{p-1} \equiv 1 \pmod p \Rightarrow a \cdot a^{p-2}b \equiv b \pmod p$$

    $$\text{So, } a^{p-2}b \text{ is a solution of } ax \equiv b \pmod p$$

    $$2x \equiv 1 \pmod {31}$$
    $$\text{As } (2,31)=1,\text{ there is exactly one solution,and according to the exercise,it is this one: } 2^{31-2}=2^{29}$$
    $$x \equiv 2^{29}\pmod {31} \Rightarrow x \equiv 16 \pmod{31}$$$$3x \equiv 17 \pmod{29}, (3,17)=1, \text{ so there is exactly one solution,and according to the exercise,it is this one: } 3^{29-2} \cdot 17$$
    $$x \equiv 3^{29-2} \cdot 17 \pmod{19} \Rightarrow x \equiv 12 \pmod{29}$$
  • $$(a,n)=1, \text{ so from Euler's theorem: } a^{\phi(n)} \equiv 1 \pmod n$$
    $$a \cdot a^{\phi(n)-1} \equiv 1 \pmod n \Rightarrow a \cdot b a^{\phi(n)-1} \equiv b \mod n$$

    $$So, b a^{\phi(n)-1} \text{ is a solution of } ax \equiv b \pmod n$$

    $$3x \equiv 5 \pmod{26} , (3,16=1), \text{ so the only solution is : } 3^{\phi(26)-1}5=3^{11} \cdot 5 \equiv 19 \pmod{26} $$

    $$10x \equiv 21 \pmod{49}, (10,49)=1, \text{ so the only solution is : } 10^{\phi(49)-1}21=10^{41} \cdot 21\equiv 10 \pmod{49}$$

Could you tell me if it is right or if I have done something wrong? (Thinking)
 
Last edited:
Mathematics news on Phys.org
Hi! (Smile)

Your reasoning is flawless! (Sun)

But... it appears you have made 2 calculation mistakes. (Worried)
 
I like Serena said:
Hi! (Smile)

Your reasoning is flawless! (Sun)
(Clapping)(Clapping)

I like Serena said:
But... it appears you have made 2 calculation mistakes. (Worried)

Oh yes , you are right!
At $3x \equiv 17 \pmod{29}$ the solution must be: $x \equiv 2 \pmod{29}$ and at $10x \equiv 21 \pmod{49}$,the solution must be $x \equiv 7 \mod{49}$.

Or am I wrong? (Thinking)
 
evinda said:
Oh yes , you are right!
At $3x \equiv 17 \pmod{29}$ the solution must be: $x \equiv 2 \pmod{29}$ and at $10x \equiv 21 \pmod{49}$,the solution must be $x \equiv 7 \mod{49}$.

Or am I wrong? (Thinking)

You found them! (Nod)

Well... I think still one of them is wrong. (Worried)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top