- #1
- 10,877
- 423
Suppose that [itex]\mathcal H[/itex] is a Hilbert space, and that [itex]A:\mathcal H\rightarrow\mathcal H[/itex] is linear and unbounded. Is it safe to conclude that [itex]y\mapsto\langle x,Ay\rangle[/itex] is unbounded for at least one [itex]x\in\mathcal H[/itex]? How do you prove this?
(My inner product is linear in the second variable).For each [itex]x\in\mathcal H[/itex], let [itex]\phi_x[/itex] be the linear functional [itex]y\mapsto\langle x,Ay\rangle[/itex]. Suppose that [itex]\phi_x[/itex] is bounded for all [itex]x\in\mathcal H[/itex]. (This is what I'd like to disprove, so I'm hoping to obtain a contradiction). Then for each [itex]x\in\mathcal H[/itex], there exists a unique [itex]x'\in\mathcal H[/itex] such that [itex]\phi_x=\langle x',\cdot\rangle[/itex]. This means that for all [itex]x\in\mathcal H[/itex], we have [itex]\langle x,Ay\rangle=\phi_x(y)=\langle x',y\rangle[/itex]. Note that x' depends on x. We also have
[tex]|\langle x,Ay\rangle|=|\langle x',y\rangle|\leq \|x'\|\,\|y\|=\|\phi_x\|\,\|y\|[/tex]
for all [itex]x,y\in\mathcal H[/itex]. This is where I'm stuck. Can you really get a contradiction from this?
(My inner product is linear in the second variable).For each [itex]x\in\mathcal H[/itex], let [itex]\phi_x[/itex] be the linear functional [itex]y\mapsto\langle x,Ay\rangle[/itex]. Suppose that [itex]\phi_x[/itex] is bounded for all [itex]x\in\mathcal H[/itex]. (This is what I'd like to disprove, so I'm hoping to obtain a contradiction). Then for each [itex]x\in\mathcal H[/itex], there exists a unique [itex]x'\in\mathcal H[/itex] such that [itex]\phi_x=\langle x',\cdot\rangle[/itex]. This means that for all [itex]x\in\mathcal H[/itex], we have [itex]\langle x,Ay\rangle=\phi_x(y)=\langle x',y\rangle[/itex]. Note that x' depends on x. We also have
[tex]|\langle x,Ay\rangle|=|\langle x',y\rangle|\leq \|x'\|\,\|y\|=\|\phi_x\|\,\|y\|[/tex]
for all [itex]x,y\in\mathcal H[/itex]. This is where I'm stuck. Can you really get a contradiction from this?