- #1
chwala
Gold Member
- 2,753
- 388
- Homework Statement
- See attached
- Relevant Equations
- Vectors
My interest is only on part (b),
For part (i), My approach is as follows,
##PB=PO+OB##
##PB=-\dfrac{2}{5}a +b##
##AD=AO+OD##
##AD=-a+\dfrac{5}{2}b##
Therefore, ##PB=\dfrac{2}{5}AD##
For part (ii), we shall have;
##QD=QB+BD##
##QD=\dfrac{2}{7}AB+\dfrac{3}{2}b##
##QD=-\dfrac{2}{7}a+\dfrac{2}{7}b+\dfrac{3}{2}b##
##QD=\dfrac{25}{14}b-\dfrac{2}{7}a##
also,
##PQ=PA+AQ##
##PQ=\dfrac{3}{5}a-\dfrac{5}{7}a+\dfrac{5}{7}b##
##PQ=\dfrac{5}{7}b-\dfrac{4}{35}a##
Therefore,
##PQ=\dfrac{1}{7}\left[5b-\dfrac{4}{5}a\right]##
&
##QD=\dfrac{1}{7}\left[\dfrac{25}{2}b-2a\right]##
It follows that,
##PQ=\dfrac{5}{7}\left[25b-4a\right]##
##QD=\dfrac{2}{7}\left[25b-4a\right]##
##OQ=\dfrac{2}{5} PQ## thus shown as there is a scalar connecting the two...seeking any alternative approach and i hope my working is correct as i do not have solutions to these questions...
Last edited: