- #1
Math100
- 797
- 221
- Homework Statement
- If ## t_{n} ## denotes the nth triangular number, show that ## t_{n+2k}\equiv t_{n}\pmod {k} ##; hence, ## t_{n} ## and ## t_{n+20} ## must have the same last digit.
- Relevant Equations
- None.
Proof:
Let ## t_{n} ## be the nth triangular number.
Then ## t_{n}=\frac{n^{2}+n}{2} ## for ## n\geq 1 ##.
This means
\begin{align*}
&t_{n+2k}=\frac{(n+2k)^{2}(n+2k)}{2}\\
&=\frac{n^{2}+4kn+4k^{2}+n+2k}{2}\\
&=\frac{n^{2}+n}{2}+(2kn+2k^{2}+k)\\
&\equiv \frac{n^{2}+n}{2}\pmod {k}.\\
\end{align*}
Thus ## t_{n+2k}\equiv t_{n}\pmod {k} ##.
Therefore, ## t_{n+2k}\equiv t_{n}\pmod {k} ## if ## t_{n} ## denotes the nth triangular number.
Let ## t_{n} ## be the nth triangular number.
Then ## t_{n}=\frac{n^{2}+n}{2} ## for ## n\geq 1 ##.
This means
\begin{align*}
&t_{n+2k}=\frac{(n+2k)^{2}(n+2k)}{2}\\
&=\frac{n^{2}+4kn+4k^{2}+n+2k}{2}\\
&=\frac{n^{2}+n}{2}+(2kn+2k^{2}+k)\\
&\equiv \frac{n^{2}+n}{2}\pmod {k}.\\
\end{align*}
Thus ## t_{n+2k}\equiv t_{n}\pmod {k} ##.
Therefore, ## t_{n+2k}\equiv t_{n}\pmod {k} ## if ## t_{n} ## denotes the nth triangular number.
Last edited: