- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
Show that the elements $ab$ and $ba$, with $a,b \in G$ have the same order.
The same stands also for the elements $a$ and $c^{-1}ac$.
I have done the following:
Show that the elements $ab$ and $ba$, with $a,b \in G$ have the same order.
The same stands also for the elements $a$ and $c^{-1}ac$.
I have done the following:
- Let $m=ord(ab) \Rightarrow (ab)^m=1 \Rightarrow ababab \dots abab=1 $
Since $a \in G$, $a^{-1} \in G$:
$\Rightarrow a^{-1}ababab \dots abab=a^{-1} \Rightarrow babab \dots abab=a^{-1} \\ \Rightarrow babab \dots ababa=a^{-1}a \Rightarrow babab \dots ababa=1$
Since we have still the same number of elements ($2m$), we have that $(ba)^m=1$.
Therefore, $ord(ab)=ord(ba)$.Is this correct?? (Wondering)
- Let $ord(a)=m \Rightarrow a^m=1 \tag 1$
Let $ord(c^{-1}ac)=n \Rightarrow (c^{-1}ac)^n=1 \Rightarrow c^{-1}acc^{-1}ac \dots c^{-1}ac=1 \Rightarrow c^{-1}aa \dots ac=1$
Since we multiplied $n$ times the element $c^{-1}ac$ at itself, we have that $c^{-1}a^nc=1 \Rightarrow cc^{-1}a^nc=c \Rightarrow a^nc=c \Rightarrow a^ncc^{-1}=c c^{-1} \Rightarrow a^n=1 \tag 2$
From $(1)$ and $(2)$ we have that $m \mid n$, right ?? But how could I continue to show that $m=n$?? (Wondering)