Show that the energy-momentum tensor has the following matrix structure

  • #1
Lambda96
226
75
Homework Statement
Show that the energy-momentum tensor has the following matrix structure (see post)
Relevant Equations
none
Hi,

the task is as follows
Bildschirmfoto 2025-01-08 um 21.56.05.png

I had no problems deriving the expressions ##\omega##, ##\frac{\textbf{S}}{c}## and ##\frac{\textbf{S}^T}{c}##, but now I have problems showing -{## \sigma_{ij}##}. I assumed the following for the calculation:

$$F^{\mu \sigma} F_{\ \sigma}^{\! \nu}=\sum\limits_{\sigma=0}^{3}F^{\mu \sigma} F_{\ \sigma}^{\! \nu}$$

$$F^{\sigma \rho}F_{\sigma \rho}=\sum\limits_{\sigma=0}^{3}\sum\limits_{\rho=0}^{3} F^{\sigma \rho}F_{\sigma \rho}$$

But if I now calculate ##T^{11}##, I get ##\frac{1}{4 \pi}(E^2_x+B^2_z+B^2_y-\frac{1}{4} (\textbf{E}^2+\textbf{B}^2))## according to the definition of the task sheet for -{## \sigma_{ij}##}, i should get the following result ##\frac{1}{4 \pi}(E^2_x+B^2_x-\frac{1}{4} (\textbf{E}^2+\textbf{B}^2))##. Is the definition wrong or have I done something wrong?
 
Last edited:
Physics news on Phys.org
  • #2
You have done something wrong. Without actually being provided with your derivation it is impossible to determine what.
 
  • #3
Sorry, here is my calculation

$$\begin{align*}
T^{11}&=\frac{1}{4 \pi}(F^{10}F_{\ 0}^{\! 1}+F^{11}F_{\ 1}^{\! 1}+F^{12}F_{\ 2}^{\! 1}+F^{13}F_{\ 3}^{\! 1}+\frac{1}{4}\eta^{11}2(B^2-E^2))\\
T^{11}&=\frac{1}{4 \pi}(E_x E_x+B_z B_z+B_yB_y-\frac{1}{4} (\textbf{E}^2+\textbf{B}^2))\\
T^{11}&=\frac{1}{4 \pi}(E^2_x+B^2_z+B^2_y-\frac{1}{4} (\textbf{E}^2+\textbf{B}^2))
\end{align*}$$

With ##F^{\mu \nu}=\left( \begin{array}{rrr}
0 & -E_x & -E_y & -E_z\\\
E_x & 0 & -B_z & B_y\\
E_y & B_z & 0 & -B_x\\
E_z & -B_y & B_x & 0\\\
\end{array}\right)## and ##\eta^{\mu \nu}=\left( \begin{array}{rrr}
1 & 0 & 0 & 0\\
0 & -1 & 0 & 0\\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1\\
\end{array}\right)##
 
  • #4
It is unclear what happens with the invariant ##B^2 - E^2## in the second step.
 
  • #5
I don't know why I wrote it this way, but it should actually look like this :smile:

$$\begin{align*}
T^{11}&=\frac{1}{4 \pi}(F^{10}F_{\ 0}^{\! 1}+F^{11}F_{\ 1}^{\! 1}+F^{12}F_{\ 2}^{\! 1}+F^{13}F_{\ 3}^{\! 1}+\frac{1}{4}\eta^{11}2(\textbf{B}^2-\textbf{E}^2))\\
T^{11}&=\frac{1}{4 \pi}(E_x E_x+B_z B_z+B_yB_y-\frac{1}{4} (\textbf{B}^2-\textbf{E}^2))\\
T^{11}&=\frac{1}{4 \pi}(E^2_x+B^2_z+B^2_y-\frac{1}{4} (\textbf{B}^2-\textbf{E}^2))
\end{align*}$$
 
  • #6
You dropped the factor of 2, and you seem to have made a sign error calculating ##F^{1\mu}F^1{}_\mu##.
 
  • #7
There are quite some sign issues, be very careful of those. Once you get the signs correctly (and the factor of two), you should note that you can rewrite ##B_y^2 + B_z^2 = {\bf B}^2 - B_x^2## and things will fall into place.
 

Similar threads

Back
Top