- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hi! (Smile)
I want to prove that, if $f: A \xrightarrow[\text{onto}]{\text{1-1}} B$, then $f^{-1}: B \xrightarrow[\text{onto}]{\text{1-1}} A$.
That's what I have tried:
Let $x,y \in dom(f)$, with $x \neq y$.
Then, since $f:\text{ 1-1 }$, we have that $f(x) \neq f(y)$.
Also, since $f: \text{ onto } $, $\forall b \in B,\exists x$, such that $b=f(x)$.
Is it right so far?
We want to show that, if $y_1,y_2 \in B$, with $y_1 \neq y_2$, then $f^{-1}(y_1) \neq f^{-1}(y_2)$ and that $\forall x \in A, \exists d$, such that $f^{-1}(x)=d$, right?
If so, how could we show this?
I want to prove that, if $f: A \xrightarrow[\text{onto}]{\text{1-1}} B$, then $f^{-1}: B \xrightarrow[\text{onto}]{\text{1-1}} A$.
That's what I have tried:
Let $x,y \in dom(f)$, with $x \neq y$.
Then, since $f:\text{ 1-1 }$, we have that $f(x) \neq f(y)$.
Also, since $f: \text{ onto } $, $\forall b \in B,\exists x$, such that $b=f(x)$.
Is it right so far?
We want to show that, if $y_1,y_2 \in B$, with $y_1 \neq y_2$, then $f^{-1}(y_1) \neq f^{-1}(y_2)$ and that $\forall x \in A, \exists d$, such that $f^{-1}(x)=d$, right?
If so, how could we show this?