- #1
andresordonez
- 68
- 0
Homework Statement
Hi, this is problem 2.5 from "Atomic Many Body Theory" - Lindgren, Morrison
An operator which transforms under a rotation in the same way as the vector [tex]\vec{r}[/tex] (or any other vector) is called a vector operator. Show that the gradient operator [tex] \vec{\nabla} [/tex] satisfies this condition for a rotation of 90 degrees about the z axis, or, in other words that
[tex]
\nabla_x^{'} = P_z(90) \nabla_x P_z(-90) = \nabla_y
[/tex]
[tex]
\nabla_y^{'} = -\nabla_x
[/tex]
[tex]
\nabla_z^{'} = \nabla_z
[/tex]
Homework Equations
The operator which corresponds to a rotation by an angle [tex] \theta [/tex] about the z axis is
[tex] P_z(\theta) = \exp (-i \theta j_z) [/tex] where j is a generalized momentum
[tex] \nabla_x = i p_x [/tex] and the same is true for the y and z components
[tex] \l_z = x p_y - y p_x [/tex] where l is the orbital angular momentum operator
The Attempt at a Solution
I'm having problems with the 1st and 2nd equalities. This is how I did the third
[tex] \nabla_{z}^{'}=\exp\left\{ -i\alpha\left(xp_{y}-yp_{x}\right)\right\} ip_{z}\exp\left\{ i\alpha\left(xp_{y}-yp_{x}\right)\right\} [/tex]
[tex] [p_{z},xp_{y}-yp_{x}]=[p_{z},xp_{y}]-[p_{z},yp_{x}]=x[p_{z},p_{y}]+[p_{z},y]p_{x}-y[p_{z},p_{x}]-[p_{z},y]p_{x}=0 [/tex]
[tex] \Rightarrow\nabla_{z}^{'}=i\exp\left\{ -i\alpha\left(xp_{y}-yp_{y}\right)\right\} \exp\left\{ i\alpha\left(xp_{y}-yp_{y}\right)\right\} p_{z}=ip_{z}=\nabla_{z} [/tex]
I think this one is right, but if you see any error please let me know
This is one of my attempts at solving the third inequality (which is very similar to the first)
[tex] \nabla_{y}^{'}=-\nabla_{x} [/tex]
[tex] \nabla_{y}^{'}=P_{z}(90\textdegree)\nabla_{y}P_{z}(-90\textdegree) [/tex]
[tex] =\exp\left\{ -i\alpha\left(xp_{y}-yp_{x}\right)\right\} ip_{y}\exp\left\{ i\alpha\left(xp_{y}-yp_{x}\right)\right\} [/tex]
[tex] =i\left\{ \sum_{n=0}^{\infty}\frac{(-i\alpha)^{n}}{n!}\left(xp_{y}-yp_{x}\right)^{n}\right\} p_{y}\left\{ \sum_{m=0}^{\infty}\frac{(i\alpha)^{m}}{m!}\left(xp_{y}-yp_{x}\right)^{m}\right\} [/tex]
[tex] =i\left\{ \sum_{n=0}^{\infty}\frac{(-i\alpha)^{n}}{n!}\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(xp_{y})^{n-k}(yp_{x})^{k}\right\} p_{y}\left\{ \sum_{m=0}^{\infty}\frac{(i\alpha)^{m}}{m!}\sum_{s=0}^{m}(-1)^{s}\binom{m}{s}(xp_{y})^{m-s}(yp_{x})^{s}\right\} [/tex]
[tex] =i\sum_{n=0}^{\infty}\sum_{k=0}^{n}\sum_{m=0}^{\infty}\sum_{s=0}^{m}\frac{(-1)^{n}(i\alpha)^{n}}{n!}\frac{(i\alpha)^{m}}{m!}(-1)^{k}(-1)^{s}\binom{n}{k}\binom{m}{s}(xp_{y})^{n-k}(yp_{x})^{k}p_{y}(xp_{y})^{m-s}(yp_{x})^{s} [/tex]
[tex] =i\sum_{n=0}^{\infty}\sum_{k=0}^{n}\sum_{m=0}^{\infty}\sum_{s=0}^{m}\frac{(i\alpha)^{n+m}}{n!m!}(-1)^{n+k+s}\binom{n}{k}\binom{m}{s}(xp_{y})^{n-k}(yp_{x})^{k}p_{y}(xp_{y})^{m-s}(yp_{x})^{s} [/tex]
[tex] =i\sum_{n=0}^{\infty}\sum_{k=0}^{n}\sum_{m=0}^{\infty}\sum_{s=0}^{m}\frac{(i\alpha)^{n+m}}{n!m!}(-1)^{n+k+s}\binom{n}{k}\binom{m}{s}x^{n-k}p_{y}{}^{n-k}y^{k}p_{x}{}^{k}p_{y}x^{m-s}p_{y}{}^{m-s}y^{s}p_{x}{}^{s} [/tex]
[tex] =i\sum_{n=0}^{\infty}\sum_{k=0}^{n}\sum_{m=0}^{\infty}\sum_{s=0}^{m}\frac{(i\alpha)^{n+m}}{n!m!}(-1)^{n+k+s}\binom{n}{k}\binom{m}{s}x^{n-k}p_{x}{}^{k}x^{m-s}p_{x}{}^{s}p_{y}{}^{n-k}y^{k}p_{y}p_{y}{}^{m-s}y^{s} [/tex]
I've tried some other things but I don't think I'm getting any closer to the answer. Any help is much appreciated.