- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
I want to show that if $S\in \text{Syl}_p(G)$ and $N\trianglelefteq G$, then $N\cap S\in \text{Syl}_p(N)$. Could you give me some hints how we could show that? (Wondering)
Do we maybe use Frattini's Argument? (Wondering)
From that we have that since $N\trianglelefteq G$ and $S\in \text{Syl}_p(G)$, $G=NN_G(P)=N_G(P)N$, right? (Wondering)
But does this help us? (Wondering)
I want to show that if $S\in \text{Syl}_p(G)$ and $N\trianglelefteq G$, then $N\cap S\in \text{Syl}_p(N)$. Could you give me some hints how we could show that? (Wondering)
Do we maybe use Frattini's Argument? (Wondering)
From that we have that since $N\trianglelefteq G$ and $S\in \text{Syl}_p(G)$, $G=NN_G(P)=N_G(P)N$, right? (Wondering)
But does this help us? (Wondering)