- #1
mathmari
Gold Member
MHB
- 5,049
- 7
It is given that $a_{n}$ is a positive and decreasing sequence.
Show that if $\sum_{n=1}^{\infty}a_{n}$ converges, $\lim_{n \to \infty}na_{n}=0$.
That's what I tried.Could you tell me if it is right??
$\sum_{n=1}^{\infty}a_{n}$ converges,so it satisfies the Cauchy criterion,so :
$\forall m,n$ with $m>n$ it exists a $n_{0}$ such that for $m,n \geq n_{0}$:$|a_{n}+a_{n+1}+...+a_{m-1}+a_{m}|< \epsilon$ .From the Triangle inequality,we have that $|a_{n}|+|a_{n+1}|+...+|a_{m-1}|+|a_{m}|< \epsilon$ and because of the fact that $a_{n}$ is decreasing,$|a_{n}|+|a_{n+1}|+...+|a_{m-1}|+|a_{m}| \leq |a_{n}|+|a_{n}|+...+|a_{n}|+|a_{n}|=n|a_{n}|=|na_{n}| < \epsilon$.
$$|na_{n}| < \epsilon$$ ,so $\lim_{n \to \infty}na_{n}=0$
Show that if $\sum_{n=1}^{\infty}a_{n}$ converges, $\lim_{n \to \infty}na_{n}=0$.
That's what I tried.Could you tell me if it is right??
$\sum_{n=1}^{\infty}a_{n}$ converges,so it satisfies the Cauchy criterion,so :
$\forall m,n$ with $m>n$ it exists a $n_{0}$ such that for $m,n \geq n_{0}$:$|a_{n}+a_{n+1}+...+a_{m-1}+a_{m}|< \epsilon$ .From the Triangle inequality,we have that $|a_{n}|+|a_{n+1}|+...+|a_{m-1}|+|a_{m}|< \epsilon$ and because of the fact that $a_{n}$ is decreasing,$|a_{n}|+|a_{n+1}|+...+|a_{m-1}|+|a_{m}| \leq |a_{n}|+|a_{n}|+...+|a_{n}|+|a_{n}|=n|a_{n}|=|na_{n}| < \epsilon$.
$$|na_{n}| < \epsilon$$ ,so $\lim_{n \to \infty}na_{n}=0$