- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! ;)
Suppose that $A \subseteq \mathbb{R}, f_n \to f$ uniformly in $A$, $x_0$ an accumulation point of $A$ and $ \displaystyle \lim_{x \to x_0} {f_n(x)}=y_n \in \mathbb{R}$. $(y_n)$ converges in $\mathbb{R}$.Show that $ \displaystyle \lim_{x \to x_0} {f(x)}= \lim_{n \to +\infty} {y_n} \Rightarrow \lim_{x \to x_0} \lim_{n \to +\infty} {f_n(x)}= \lim_{n \to +\infty} \lim_{x \to x_0} f_n(x)$.
That is the solution that the assistant of the professor gave us:
Could you tell me if it is right?
Suppose that $A \subseteq \mathbb{R}, f_n \to f$ uniformly in $A$, $x_0$ an accumulation point of $A$ and $ \displaystyle \lim_{x \to x_0} {f_n(x)}=y_n \in \mathbb{R}$. $(y_n)$ converges in $\mathbb{R}$.Show that $ \displaystyle \lim_{x \to x_0} {f(x)}= \lim_{n \to +\infty} {y_n} \Rightarrow \lim_{x \to x_0} \lim_{n \to +\infty} {f_n(x)}= \lim_{n \to +\infty} \lim_{x \to x_0} f_n(x)$.
That is the solution that the assistant of the professor gave us:
- We set $ \displaystyle y= \lim_{n \to + \infty} y_n$
We have $|f(x)-y|=|f(x)-y_n+y_n-y| \leq |f(x)-y_n|+|y_n-y|$
$ \displaystyle \Rightarrow \lim_{x \to x_0} \sup_{x}{|f(x)-y|} \leq \lim_{x \to x_0} \sup_{x} |f(x)-y_n|+ \lim_{x \to x_0} \sup_{x} |y_n-y| \overset{n \to \infty}{\longrightarrow} 0+0=0$
We have used that $ \displaystyle \lim_{x \to x_0} \sup_{x} {|f(x)-y_n|}=0$,because:
$|f(x)-y_n|=|f(x)-f_n(x)+f_n(x)-y_n| \leq |f(x)-f_n(x)|+|f_n(x)-y_n|$
$ \displaystyle \lim_{ x \to x_0} \sup_{x} |f(x)-y_n| \leq \lim_{x \to x_0} \sup_{x} |f(x)-f_n(x)|+ \lim_{x \to x_0} \sup_{x} |f_n(x)-y_n|$.
But, $ \displaystyle \lim_{x \to x_0} \sup_{x} f(x)= \sup_{x} \{ \lim_{n \to + \infty}{f(z_n)} | z_n \to x_0 \}$
Therefore, we have $ \displaystyle \lim_{x \to x_0} \sup_{x} |f(x)-y_n| \leq \sup_{x} |f(x)-f_n(x)|\overset{n \to \infty}{\longrightarrow} 0 $Is this right? I am not really sure... I would do it like that: - We set $ \displaystyle y= \lim_{n \to + \infty} y_n$
We want to show : $ \displaystyle \lim_{x \to x_0} f(x)= \lim_{n \to +\infty} y_n \Rightarrow \lim_{x \to x_0}f(x)=y$
$|f(x)-y|=|f(x)-y_n+y_n-y| \leq |f(x)-y_n|+|y_n-y| (1)$
Let $\epsilon>0$. As $y_n \to y, \exists n_0$ such that $ \forall n \geq n_0: |y_n-y|< \epsilon$
$ \displaystyle |f(x)-y_n|=|f(x)-f_n(x)+f_n(x)-y_n| \leq |f_n(x)-f(x)|+|f_n(x)-y_n|$
$ \displaystyle \leq \sup_{x} |f_n(x)-f(x)| + |f_n(x)-y_n| \leq \epsilon $, because:
$f_n \to f$ uniformly in $A$, so $ \displaystyle \sup_{x} |f_n(x)-f(x)| \leq \epsilon$.
Also, $ \displaystyle \lim_{x \to x_0} {f_n(x)}=y_n \in \mathbb{R}$, so $|f_n(x)-y_n|< \epsilon$.
From the relation $(1)$,we have $|f(x)-y| \leq \epsilon$.
Could you tell me if it is right?