- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hi!
Given that $C \in \mathbb{R}^{n,n}$ is symmetric and positive definite and $D \in \mathbb{R}^{n,n}$.
I have to show that $D^TCD$ is positive definite $\Leftrightarrow $ $D$ is invertible.
For the direction $\Rightarrow $:
$D^TCD$ is positive definite, that means that $\forall x \in \mathbb{R}^n\setminus \{0\} :$ $ x^T D^TCD x >0$.
How can I continue?
Given that $C \in \mathbb{R}^{n,n}$ is symmetric and positive definite and $D \in \mathbb{R}^{n,n}$.
I have to show that $D^TCD$ is positive definite $\Leftrightarrow $ $D$ is invertible.
For the direction $\Rightarrow $:
$D^TCD$ is positive definite, that means that $\forall x \in \mathbb{R}^n\setminus \{0\} :$ $ x^T D^TCD x >0$.
How can I continue?