- #1
Fermat1
- 187
- 0
Consider a density family $f(x,{\mu})=c_{{\mu}}x^{{\mu}-1}\exp(\frac{-(\ln(x))^2)^2}{2}$ , where $c_{{\mu}}=\frac{1}{{\sqrt{2{\pi}}}}\exp(-{\mu}^2/2)$
For a sample $(X_{1},...,X_{n})$ fnd the maximum likelihood estimator and show it is unbiased. You may find the substitution $y=\ln x$ helpful.
I find the MLE to be ${\mu}_{1}=\frac{1}{n}(\ln(X_{1})+...+\ln(X_{n}))$. For unbiasedness, I'm not sure what to do. If I substitute $y_{i}=\ln(x_{i}$ I get $E({\mu}_{1})=\frac{1}{n}(E(Y_{1})+...+E(Y_{n}))$. Am I meant to recognise the distribution of the $Y_{i}$?
For a sample $(X_{1},...,X_{n})$ fnd the maximum likelihood estimator and show it is unbiased. You may find the substitution $y=\ln x$ helpful.
I find the MLE to be ${\mu}_{1}=\frac{1}{n}(\ln(X_{1})+...+\ln(X_{n}))$. For unbiasedness, I'm not sure what to do. If I substitute $y_{i}=\ln(x_{i}$ I get $E({\mu}_{1})=\frac{1}{n}(E(Y_{1})+...+E(Y_{n}))$. Am I meant to recognise the distribution of the $Y_{i}$?
Last edited: