- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
A set $R$ with two operations $+$ und $\cdot$ is a ring, if the following properties are satisfied:
Let $\mathbb{K}$ be a field.
We have the set $T_n(\mathbb{K})=\{A\in \mathbb{K}^{n\times n} \mid a_{ij}=0 \text{ für alle } i,j\in \{1, \ldots , n\} \text{ mit } i>j\}$.
I want to show that $T_n(\mathbb{K})$ is a ring with the addition and multiplication of matrices. How can we show the first property? (Wondering)
Let $A,B,C\in T_n(\mathbb{K})$.
To show the other two properties do we have to find the form of the element of the the resulting matrix at the position $ij$ ? (Wondering)
$$[(A \cdot B)\cdot C]_{ij}=( \sum_{k=1}^ma_{ik}b_{kj})c_{ij}$$
To what is this equal? (Wondering)
A set $R$ with two operations $+$ und $\cdot$ is a ring, if the following properties are satisfied:
- $(R, +)$ is a commutative/abelian group
- Associativity : For all $a,b, c \in R$ it holds that $(a \cdot b)\cdot c = a \cdot (b \cdot c)$.
- Distributive property : For all $a,b, c \in R$ it holds that $(a+b)\cdot c=a\cdot c+b\cdot c$ und $a \cdot (b + c)=a\cdot b+a\cdot c$.
Let $\mathbb{K}$ be a field.
We have the set $T_n(\mathbb{K})=\{A\in \mathbb{K}^{n\times n} \mid a_{ij}=0 \text{ für alle } i,j\in \{1, \ldots , n\} \text{ mit } i>j\}$.
I want to show that $T_n(\mathbb{K})$ is a ring with the addition and multiplication of matrices. How can we show the first property? (Wondering)
Let $A,B,C\in T_n(\mathbb{K})$.
To show the other two properties do we have to find the form of the element of the the resulting matrix at the position $ij$ ? (Wondering)
$$[(A \cdot B)\cdot C]_{ij}=( \sum_{k=1}^ma_{ik}b_{kj})c_{ij}$$
To what is this equal? (Wondering)