- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
We have the tridiagonal matrix $A=\begin{pmatrix}2 & 1 & \ldots & 0 \\ 1 & 2 & 1 & \ldots \\ \ldots & \ldots & \ldots & \ldots \\ 0 & \ldots & 1 & 2\end{pmatrix}$. I want to show that it is positive definite.
For that it is given the following hint:
1) $\langle x, Ax\rangle \geq 0$
2) $\langle x, Ax\rangle =0 \Rightarrow x=0$ I have done the following:
The $i$-th component of the vector $Ax$ is \begin{equation*}(Ax)_i=x_{i-1}+2x_i+x_{i+1} , \ i=1, 2, \ldots , n \ \text{ with } x_0=x_{n+1}=0\end{equation*}
Then we have the following: \begin{equation*}\langle x, Ax\rangle=\sum_{i=1}^nx_i(Ax)_i =\sum_{i=1}^nx_i\left (x_{i-1}+2x_i+x_{i+1}\right )=\sum_{i=1}^nx_i x_{i-1}+2\sum_{i=1}^n x_i^2+\sum_{i=1}^n x_ix_{i+1}\end{equation*}
Is everything correct so far? (Wondering)
Now we have to show that it is positive if the vector $x$ is not the zero vector and equal to $0$ if the vector is the zero vector, right? But how can we do that? (Wondering)
We have the tridiagonal matrix $A=\begin{pmatrix}2 & 1 & \ldots & 0 \\ 1 & 2 & 1 & \ldots \\ \ldots & \ldots & \ldots & \ldots \\ 0 & \ldots & 1 & 2\end{pmatrix}$. I want to show that it is positive definite.
For that it is given the following hint:
1) $\langle x, Ax\rangle \geq 0$
2) $\langle x, Ax\rangle =0 \Rightarrow x=0$ I have done the following:
The $i$-th component of the vector $Ax$ is \begin{equation*}(Ax)_i=x_{i-1}+2x_i+x_{i+1} , \ i=1, 2, \ldots , n \ \text{ with } x_0=x_{n+1}=0\end{equation*}
Then we have the following: \begin{equation*}\langle x, Ax\rangle=\sum_{i=1}^nx_i(Ax)_i =\sum_{i=1}^nx_i\left (x_{i-1}+2x_i+x_{i+1}\right )=\sum_{i=1}^nx_i x_{i-1}+2\sum_{i=1}^n x_i^2+\sum_{i=1}^n x_ix_{i+1}\end{equation*}
Is everything correct so far? (Wondering)
Now we have to show that it is positive if the vector $x$ is not the zero vector and equal to $0$ if the vector is the zero vector, right? But how can we do that? (Wondering)