- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hey again! (Mmm)
I want to show that there are no $a,b \geq 1, n \geq 2$ such that $a^n-b^n \mid a^n+b^n$.
That's what I have tried so far:
$$\exists k \in \mathbb{Z} \text{ such that } a^n+b^n=k(a^n-b^n)$$
Let $d=(a,b)$, $a_1=\frac{a}{d} \ , b_1=\frac{b}{d}$ , then $(a_1,b_1)=1$
So,we have :
$$d^n \cdot a_1^n+d^n \cdot b_1^n=k(d^n \cdot a_1^n-d^n \cdot b_1^n) \\ \Rightarrow a_1^n+b_1^n=k(a_1^n-b_1^n) \\ \Rightarrow (k-1) a^n=(k+1) b_1^n$$
But...how could I continue? (Thinking) (Thinking)
I want to show that there are no $a,b \geq 1, n \geq 2$ such that $a^n-b^n \mid a^n+b^n$.
That's what I have tried so far:
$$\exists k \in \mathbb{Z} \text{ such that } a^n+b^n=k(a^n-b^n)$$
Let $d=(a,b)$, $a_1=\frac{a}{d} \ , b_1=\frac{b}{d}$ , then $(a_1,b_1)=1$
So,we have :
$$d^n \cdot a_1^n+d^n \cdot b_1^n=k(d^n \cdot a_1^n-d^n \cdot b_1^n) \\ \Rightarrow a_1^n+b_1^n=k(a_1^n-b_1^n) \\ \Rightarrow (k-1) a^n=(k+1) b_1^n$$
But...how could I continue? (Thinking) (Thinking)
Last edited: