Show that these elements are linearly independent

In summary, we have shown that for a linear transformation $\phi:V\to V$ and a vector $v\in V$ with $\phi^{m-1}(v)\neq 0=\phi^m(v)$, the elements $\phi^0(v)=v, \phi (v), \ldots ,\phi^{m-1}(v)$ are linearly independent. We have used induction and the fact that the image of $\phi$ is also linearly independent. For the second question, we can describe the first $m-1$ columns of $M_B(\phi)$ as $\phi^0(v), \phi^1(v), \ldots ,\phi^{
  • #1
mathmari
Gold Member
MHB
5,049
7
Hey! 😊

Let $1\leq n\in \mathbb{N}$, let $\mathbb{K}$ be a field, $V$ a $\mathbb{K}$-vector space with $\dim_{\mathbb{K}}V=n$ and let $\phi:V\rightarrow V$ be linear.

- Let $0\neq v\in V$ and $1\leq m\in \mathbb{N}$, such that $\phi^{m-1}(v)\neq 0=\phi^m(v)$. Show that $\phi^0(v)=v, \phi (v), \ldots ,\phi^{m-1}(v)$ are linearly independent.

Hint : Use induction for $m$ and for the case $m\geq 2$ consider $w=\phi (v)$.

- Let $v,m$ as above. Let $B=(b_1, \ldots , b_n)$ be a basis of $V$, with $b_i=\phi^{i-1}(v)$ for all $1\leq i\leq m$. Describe the first $m-1$ columns of $M_B(\phi)$.

I have done the following:

- Base case: If $m=1$ the we have the element $\phi^0(v)=v$. This element is linearly independent.

Inductive hypothesis: We assume that $\phi^0(v)=v, \phi (v), \ldots ,\phi^{m-1}(v)$ are linearly independent. (IH)

Inductive step: We want to show that $\phi^0(v)=v, \phi (v), \ldots ,\phi^{m-1}(v), \phi^m(v)$ is linearly independent.

\begin{align*}&\lambda_0\phi^0(v)+\lambda_1\phi (v)+ \ldots +\lambda_{m-1}\phi^{m-1}(v)+\lambda_m \phi^m(v)=0 \\ & \Rightarrow \lambda_m \phi^m(v)=-\lambda_0\phi^0(v)-\lambda_1\phi (v)- \ldots -\lambda_{m-1}\phi^{m-1}(v)\end{align*}

We know that the elements of the right side are linearly independent. How can we use that information
here? Could you give me a hint?
 
Last edited by a moderator:
Physics news on Phys.org
  • #2
mathmari said:
Hey! 😊

Let $1\leq n\in \mathbb{N}$, let $\mathbb{K}$ be a field, $V$ a $\mathbb{K}$-vector space with $\dim_{\mathbb{K}}V=n$ and let $\phi:V\rightarrow V$ be linear.

- Let $0\leq v\in V$ and $1\leq m\in \mathbb{N}$, such that $\phi^{m-1}(v)\neq 0=\phi^m(v)$. Show that $\phi^0(v)=v, \phi (v), \ldots ,\phi^{m-1}(v)$ are linearly independent.

Hint : Use induction for $m$ and for the case $m\geq 2$ consider $w=\phi (v)$.

- Let $v,m$ as above. Let $B=(b_1, \ldots , b_n)$ be a basis of $V$, with $b_i=\phi^{i-1}(v)$ for all $1\leq i\leq m$. Describe the first $m-1$ columns of $M_B(\phi)$.

I have done the following:

- Base case: If $m=1$ the we have the element $\phi^0(v)=v$. This element is linearly independent.

Inductive hypothesis: We assume that $\phi^0(v)=v, \phi (v), \ldots ,\phi^{m-1}(v)$ are linearly independent. (IH)

Inductive step: We want to show that $\phi^0(v)=v, \phi (v), \ldots ,\phi^{m-1}(v), \phi^m(v)$ is linearly independent.

\begin{align*}&\lambda_0\phi^0(v)+\lambda_1\phi (v)+ \ldots +\lambda_{m-1}\phi^{m-1}(v)+\lambda_m \phi^m(v)=0 \\ & \Rightarrow \lambda_m \phi^m(v)=-\lambda_0\phi^0(v)-\lambda_1\phi (v)- \ldots -\lambda_{m-1}\phi^{m-1}(v)\end{align*}

We know that the elements of the right side are linearly independent. How can we use that information
here? Could you give me a hint?
Hey mathmari!

I believe the inductive hypothesis should be:

For some $m\ge 1$ we assume that for any $v\in V$ such that $\phi^{m-1}(v)\neq 0=\phi^m(v)$ we have that $\phi^0(v)=v, \phi (v), \ldots ,\phi^{m-1}(v)$ are linearly independent (IH).

Then we have to prove in the inductive step that for any $v\in V$ such that $\phi^{m}(v)\neq 0=\phi^{m+1}(v)$ we have that $\phi^0(v)=v, \phi (v), \ldots ,\phi^{m}(v)$ are linearly independent.

Now consider $w=\phi(v)$. 🤔
 
Last edited:
  • #3
We have $\phi^0(w)=\phi^1(v),\ldots,\phi^{m-1}(w)=\phi^{m}(v)\ne 0,\phi^m(w)=\phi^{m+1}(v)=0$.
According to the inductive hypothesis this means that $\phi^1(v),\ldots, \phi^{m}(v)$ are independent.
What is left to prove, is that if we add $v$ to the set, that it is still independent, yes? :unsure:

So suppose the resulting set in not independent.
Then it must be possible to write $v$ as a linear combination of $\phi^1(v),\ldots, \phi^{m}(v)$.
Apply $\phi$ on both sides. Can we reach a contradiction? 🤔
 
  • #4
Klaas van Aarsen said:
We have $\phi^0(w)=\phi^1(v),\ldots,\phi^{m-1}(w)=\phi^{m}(v)\ne 0,\phi^m(w)=\phi^{m+1}(v)=0$.
According to the inductive hypothesis this means that $\phi^1(v),\ldots, \phi^{m}(v)$ are independent.

From the inductive hypothesis we have that $\phi^0(v)=v, \phi (v), \ldots ,\phi^{m-1}(v)$ are independent, right? How do we get that $\phi^1(v),\ldots, \phi^{m}(v)$ are independent? :unsure:
Klaas van Aarsen said:
What is left to prove, is that if we add $v$ to the set, that it is still independent, yes? :unsure:

I got stuck right now. Why do we check if the set is still independent when we add the vector $v$ ? Because above we don't have $\phi^0(v)$? :unsure:
 
  • #5
mathmari said:
From the inductive hypothesis we have that $\phi^0(v)=v, \phi (v), \ldots ,\phi^{m-1}(v)$ are independent, right? How do we get that $\phi^1(v),\ldots, \phi^{m}(v)$ are independent?

Let $w=\phi(v)$ in the inductive step. Then we have $\phi^0(w)=w, \phi (w), \ldots ,\phi^{m-1}(w)\ne 0,\phi^m(w)=0$ yes?
Can we apply the IH from post #2 to that? 🤔

mathmari said:
I got stuck right now. Why do we check if the set is still independent when we add the vector $v$ ? Because above we don't have $\phi^0(v)$?
Let's apply IH from post #2 to $w=\phi(v)$ first and see what comes out of it. Then we'll get back to this. 🤔
 
Last edited:
  • #6
So do we have the following?

Bas Case: If $m=1$ then we have one element $\phi^0(v)=v$. This element is linearnly independent.

Inductive Hypothesis: For a $m\ge 1$ we assume that for a $v\in V$ such that $\phi^{m-1}(v)\neq 0=\phi^m(v)$ we have that $\phi^0(v)=v, \phi (v), \ldots ,\phi^{m-1}(v)$ are linearly independent. (IH)

Inductive Step: We want to show that for $v\in V$ with $\phi^{m}(v)\neq 0=\phi^{m+1}(v)$ it holds that $\phi^0(v)=v, \phi (v), \ldots ,\phi^{m}(v)$ are linearly independent.
We consider $w=\phi(v)$.
Then we have that $\phi^0(w)=w, \phi (w), \ldots ,\phi^{m-1}(w)\ne 0,\phi^m(w)=0$.
From (IH) we have that $\phi^0(w), \phi (w), \ldots ,\phi^{m-1}(w)$ are lineanrlyindependent. Since $\phi^0(w)=\phi^1(v),\ldots,\phi^{m-1}(w)=\phi^{m}(v)$, it follows that $\phi^1(v),\ldots,\phi^{m}(v)$ are linearly independent.
We check if the set remains linearly independent even if we add $v$ to the set.
We assume that this set is linearly dependent
Then we can write $v$ as a linear combination of $\phi^1(v),\ldots, \phi^{m}(v)$.
We apply $\phi$ at both sides.
\begin{align*}&v=\lambda_1\phi^1(v)+\ldots+\lambda_{m-1}\phi^{m-1}(v)+\lambda_m \phi^{m}(v) \\ & \Rightarrow \phi (v)=\phi \left (\lambda_1\phi^1(v)+\ldots+\lambda_{m-1}\phi^{m-1}(v)+\lambda_m \phi^{m}(v)\right ) \\ & \Rightarrow \phi (v)=\lambda_1\phi^2(v)+\ldots+\lambda_{m-1}\phi^{m}(v)+\lambda_m \phi^{m+1}(v) \\ & \Rightarrow \phi (v)=\lambda_1\phi^2(v)+\ldots+\lambda_{m-1}\phi^{m}(v)+\lambda_m \cdot 0 \\ & \Rightarrow \phi (v)=\lambda_1\phi^2(v)+\ldots+\lambda_{m-1}\phi^{m}(v) \\ & \Rightarrow -\phi (v)+\lambda_1\phi^2(v)+\ldots+\lambda_{m-1}\phi^{m}(v)=0 \\ & \Rightarrow -\phi^1 (v)+\lambda_1\phi^2(v)+\ldots+\lambda_{m-1}\phi^{m}(v)=0\end{align*}
This means that $\phi^1(v),\ldots,\phi^{m}(v)$ are linearly dependent, since not all coefficients are zero.
A contradiction. Therefore $\phi^0(v)=v, \phi (v), \ldots ,\phi^{m}(v)$ are linearly independent.Is everything correct? :unsure:Could you give me also a hint for the second question? :unsure:
It must hold that $\phi (b_i)=b_i\Rightarrow \phi^i(v)=b_i$, or not?
 
Last edited by a moderator:
  • #7
mathmari said:
Is everything correct?

Could you give me also a hint for the second question?
Yep. (Nod)

The columns of the matrix of $\phi$ with respect to $B$ are the images of the basis vectors with respect to $B$ aren't they?
The first basis vector is $b_1$, which is represented by $\begin{pmatrix}1\\0\\\vdots\\0\end{pmatrix}$.
And its image (assuming $m\ge 2$) is $b_2$, which is represented by $\begin{pmatrix}0\\1\\0\\\vdots\\0\end{pmatrix}$, which is also the first column of the matrix then, isn't it? 🤔
 
  • #8
Klaas van Aarsen said:
The columns of the matrix of $\phi$ with respect to $B$ are the images of the basis vectors with respect to $B$ aren't they?
The first basis vector is $b_1$, which is represented by $\begin{pmatrix}1\\0\\\vdots\\0\end{pmatrix}$.
And its image (assuming $m\ge 2$) is $b_2$, which is represented by $\begin{pmatrix}0\\1\\0\\\vdots\\0\end{pmatrix}$, which is also the first column of the matrix then, isn't it? 🤔

So is the $i$-th column of the matrix the vector $e_{i+1}$ ? :unsure:
 
  • #9
mathmari said:
So is the $i$-th column of the matrix the vector $e_{i+1}$ ?
Yep. Up to column $m-1$ that is. We don't know what the remaining columns are. 🤔
 
  • #10
Klaas van Aarsen said:
Yep. Up to column $m-1$ that is. We don't know what the remaining columns are. 🤔

Do we know that this holds till the column $m-1$ because we only know that the $\phi^i$'s for $0\leq i\leq m-1$ are linearly independent? :unsure:
 
  • #11
mathmari said:
Do we know that this holds till the column $m-1$ because we only know that the $\phi^i$'s for $0\leq i\leq m-1$ are linearly independent?
It's not about linear independence is it?
Just that we only know $\phi^i(b_1)=\phi^i(v)$ up to $i=m-1$. 🤔
 
  • #12
Klaas van Aarsen said:
It's not about linear independence is it?
Just that we only know $\phi^i(b_1)=\phi^i(v)$ up to $i=m-1$. 🤔

How do we get $\phi^i(b_1)=\phi^i(v)$ ?
We have that $b_i=\phi^{i-1}(v) \Rightarrow \phi (b_i)=\phi^{i}(v) $, or not? :unsure:
 
  • #13
mathmari said:
How do we get $\phi^i(b_1)=\phi^i(v)$ ?
We have that $b_i=\phi^{i-1}(v) \Rightarrow \phi (b_i)=\phi^{i}(v) $, or not?
I should have written $\phi^i(b_1)=\phi^{i-1}(v)$. 😶
 

FAQ: Show that these elements are linearly independent

What does it mean for elements to be linearly independent?

Linear independence refers to a set of elements in a vector space that cannot be expressed as a linear combination of other elements in that space. In simpler terms, it means that none of the elements can be written as a multiple of another element.

How do you prove that elements are linearly independent?

To prove that elements are linearly independent, you need to show that the only solution to the equation a1v1 + a2v2 + ... + anvn = 0 (where a1, a2, ..., an are scalars and v1, v2, ..., vn are the elements) is a1 = a2 = ... = an = 0. This can be done through various methods such as Gaussian elimination or using determinants.

Can a set of linearly independent elements be a subset of a larger set of elements?

Yes, a set of linearly independent elements can be a subset of a larger set of elements. In fact, it is common for a linearly independent set to be a subset of a larger set in a vector space.

What is the importance of linear independence in scientific research?

Linear independence is an important concept in scientific research, especially in fields such as physics, engineering, and mathematics. It allows us to analyze and solve complex systems of equations, and is essential in understanding and predicting the behavior of physical systems.

Can a set of elements be both linearly independent and linearly dependent?

No, a set of elements cannot be both linearly independent and linearly dependent. These two concepts are mutually exclusive, and a set of elements can only be one or the other. If a set of elements is linearly independent, it cannot be linearly dependent and vice versa.

Similar threads

Replies
24
Views
1K
Replies
5
Views
1K
Replies
1
Views
1K
Replies
10
Views
1K
Replies
23
Views
1K
Replies
4
Views
990
Replies
9
Views
1K
Replies
39
Views
2K
Replies
15
Views
1K
Replies
15
Views
2K
Back
Top