- #1
chwala
Gold Member
- 2,753
- 388
- Homework Statement
- Show that ##(x-a)(x-b)=b^2## has real roots
- Relevant Equations
- discriminant
If we have a quadratic equation, ##px^2+qx+d## then it follows that for real roots; The discriminant
## D= q^2-4pd≥0## therefore on expanding ##(x-a)(x-b)=b^2## we get,
##x^2-bx-ax+ab-b^2=0##
##a^2+2ab+b^2-4ab+4b^2≥0##
##a^2-2ab+b^2+4b^2≥0##,
##(a-b)^2+4b^2≥0##
since, ##(a-b)^2 ≥0## and ##4b^2≥0## is true for any value of ##a,b ∈ℝ## then our proof is complete. Thanks guys Bingo!
Is there another way of proving this?
## D= q^2-4pd≥0## therefore on expanding ##(x-a)(x-b)=b^2## we get,
##x^2-bx-ax+ab-b^2=0##
##a^2+2ab+b^2-4ab+4b^2≥0##
##a^2-2ab+b^2+4b^2≥0##,
##(a-b)^2+4b^2≥0##
since, ##(a-b)^2 ≥0## and ##4b^2≥0## is true for any value of ##a,b ∈ℝ## then our proof is complete. Thanks guys Bingo!
Is there another way of proving this?
Last edited: