- #1
Redwaves
- 134
- 7
- Homework Statement
- Show the identity ##\vec{\nabla}(\vec{r} \cdot \vec{u}) = \vec{u} + \vec{r}(\vec{\nabla} \cdot \vec{u}) + i(\vec{L} \times \vec{u})##, ##\vec{L} = \frac{\vec{r}}{i} \times \vec{\nabla}##
- Relevant Equations
- ##\vec{\nabla}(\vec{r} \cdot \vec{u}) = \vec{u} + \vec{r}(\vec{\nabla} \cdot \vec{u}) + i(\vec{L} \times \vec{u})##, ##\vec{L} = \frac{\vec{r}}{i} \times \vec{\nabla}##
First of all, sorry for the title I don't know the name of this formula and that's part of the problem, I can't find anything on google.
I have to show the identity above. Here's what I did. I don't know if this is correct so far.
##\vec{u} + \vec{r}(\vec{\nabla} \cdot \vec{u}) + i(\vec{L} \times \vec{u})##
= ##\vec{u} + \vec{r}(\vec{\nabla} \cdot \vec{u}) + i(\frac{\vec{r}}{i} \times \vec{\nabla} \times \vec{u})##
= ##\vec{u} + \vec{r}(\vec{\nabla} \cdot \vec{u}) + i(\vec{\nabla}(\frac{\vec{r}}{i} \cdot \vec{u}) - \vec{u}(\frac{\vec{r}}{i} \cdot \vec{\nabla}))##
= ##\vec{u} + \vec{r}(\vec{\nabla} \cdot \vec{u}) + \vec{\nabla}(\vec{r} \cdot \vec{u}) - \vec{u}(\vec{r} \cdot \vec{\nabla})##
Is there a specific name for this identity?
I have to show the identity above. Here's what I did. I don't know if this is correct so far.
##\vec{u} + \vec{r}(\vec{\nabla} \cdot \vec{u}) + i(\vec{L} \times \vec{u})##
= ##\vec{u} + \vec{r}(\vec{\nabla} \cdot \vec{u}) + i(\frac{\vec{r}}{i} \times \vec{\nabla} \times \vec{u})##
= ##\vec{u} + \vec{r}(\vec{\nabla} \cdot \vec{u}) + i(\vec{\nabla}(\frac{\vec{r}}{i} \cdot \vec{u}) - \vec{u}(\frac{\vec{r}}{i} \cdot \vec{\nabla}))##
= ##\vec{u} + \vec{r}(\vec{\nabla} \cdot \vec{u}) + \vec{\nabla}(\vec{r} \cdot \vec{u}) - \vec{u}(\vec{r} \cdot \vec{\nabla})##
Is there a specific name for this identity?
Last edited: