- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
Show that for an odd integer $m\ge 5$,
$\displaystyle {m\choose 0} 5^{m-1}-{m\choose 1} 5^{m-2}+{m\choose 2} 5^{m-3}-\cdots+{m\choose m-1} $
is not a prime number.
$\displaystyle {m\choose 0} 5^{m-1}-{m\choose 1} 5^{m-2}+{m\choose 2} 5^{m-3}-\cdots+{m\choose m-1} $
is not a prime number.