MHB Show the Units of Zn with modular multiplication are a group

E01
Messages
8
Reaction score
0
I am trying to do an exercise where I am showing that the set of all elements of $\Bbb{Z}_n$ that are coprime with n form a group under modular addition.

So far I have shown associativity, identity, and closure, but I'm having trouble showing the existence of an inverse. I know I can't use reciprocals and I can't find a way to prove that for $r \in U_n$ there exists some $t \in U_n$ such that $tr$ has a remainder of 1 when divided by n.

Any hints?
 
Physics news on Phys.org
E01 said:
I am trying to do an exercise where I am showing that the set of all elements of $\Bbb{Z}_n$ that are coprime with n form a group under modular addition.

So far I have shown associativity, identity, and closure, but I'm having trouble showing the existence of an inverse. I know I can't use reciprocals and I can't find a way to prove that for $r \in U_n$ there exists some $t \in U_n$ such that $tr$ has a remainder of 1 when divided by n.

Any hints?

Hi E01,

Use the fact that $gcd(r,n) = 1$ if and only if there exist integers $s$ and $t$ such that $rs + nt = 1$.
 
E01 said:
I am trying to do an exercise where I am showing that the set of all elements of $\Bbb{Z}_n$ that are coprime with n form a group under modular addition.

So far I have shown associativity, identity, and closure, but I'm having trouble showing the existence of an inverse. I know I can't use reciprocals and I can't find a way to prove that for $r \in U_n$ there exists some $t \in U_n$ such that $tr$ has a remainder of 1 when divided by n.

Any hints?

Hint #2: take Euge's equation mod $n$.
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top