- #1
E01
- 8
- 0
I am trying to do an exercise where I am showing that the set of all elements of $\Bbb{Z}_n$ that are coprime with n form a group under modular addition.
So far I have shown associativity, identity, and closure, but I'm having trouble showing the existence of an inverse. I know I can't use reciprocals and I can't find a way to prove that for $r \in U_n$ there exists some $t \in U_n$ such that $tr$ has a remainder of 1 when divided by n.
Any hints?
So far I have shown associativity, identity, and closure, but I'm having trouble showing the existence of an inverse. I know I can't use reciprocals and I can't find a way to prove that for $r \in U_n$ there exists some $t \in U_n$ such that $tr$ has a remainder of 1 when divided by n.
Any hints?