- #1
Confusedalways
- 4
- 0
So the question is show that
$$S=\left\{ \begin{pmatrix} a & b\\ -b & a \end{pmatrix} :a,b \in \Bbb{R} ,\text{ not both zero}\right\}$$ is isomorphic to $\Bbb{C}^*$, which is a non-zero complex number considered as a group under multiplication
So I've shown that it is a group homomorphism by showing how if
$$θ: x+iy → \begin{pmatrix} x & y\\ -y & x \end{pmatrix}$$ then I proved that
θ((x1+iy1 )(x2 +iy2))=θ(x1+iy1)θ(x2+iy2)
But I'm stuck on how to show it is both injective and surjective to prove it's an isomorphism?
Thanks!
$$S=\left\{ \begin{pmatrix} a & b\\ -b & a \end{pmatrix} :a,b \in \Bbb{R} ,\text{ not both zero}\right\}$$ is isomorphic to $\Bbb{C}^*$, which is a non-zero complex number considered as a group under multiplication
So I've shown that it is a group homomorphism by showing how if
$$θ: x+iy → \begin{pmatrix} x & y\\ -y & x \end{pmatrix}$$ then I proved that
θ((x1+iy1 )(x2 +iy2))=θ(x1+iy1)θ(x2+iy2)
But I'm stuck on how to show it is both injective and surjective to prove it's an isomorphism?
Thanks!
Last edited by a moderator: