- #1
Boromir
- 38
- 0
Let H be a hilbert space. Let T be a bounded normal operator on H. Consider the closure of the set of polynomials in $T$ and $T^{*}$. Show that if T has an inverse in B(H), then the inverse is in this generated algebra.
Notes: This is pre-gelfand naimark so can't invoke that
My thoughts: If $||1-T||<1$ then T has an inverse and the inverse is the limit of polynomials in T so in the algebra. But what about invertible T with $||1-T||>1$?
Notes: This is pre-gelfand naimark so can't invoke that
My thoughts: If $||1-T||<1$ then T has an inverse and the inverse is the limit of polynomials in T so in the algebra. But what about invertible T with $||1-T||>1$?