- #1
Punkyc7
- 420
- 0
Show the taxicab norm is not an IP.
taxicab norm is v=(x[itex]_{1}[/itex]...x[itex]_{n}[/itex])
then ||V||= |x[itex]_{1}[/itex]|+...+|x[itex]_{n}[/itex]|)
I was thinking about using the parallelogram law
but I would get this nasty thing(|x[itex]_{1}[/itex]+w[itex]_{1}[/itex]|+...+|x[itex]_{n}[/itex]+w[itex]_{n}[/itex]|)[itex]^{2}[/itex]+(|x[itex]_{1}[/itex]-w[itex]_{1}[/itex]}+...+|x[itex]_{n}[/itex]-w[itex]_{n}[/itex]|[itex])^{2}[/itex]=2(|x[itex]_{1}[/itex]|+...+|x[itex]_{n}[/itex]|)[itex]^{2}[/itex]+(|w[itex]_{1}[/itex]|+...+|w[itex]_{n}[/itex]|)[itex]^{2}[/itex]Im not sure how to work with this. Am I going about this wrong?
Also there might be some typos with the absolute value signs the latex get messy
taxicab norm is v=(x[itex]_{1}[/itex]...x[itex]_{n}[/itex])
then ||V||= |x[itex]_{1}[/itex]|+...+|x[itex]_{n}[/itex]|)
I was thinking about using the parallelogram law
but I would get this nasty thing(|x[itex]_{1}[/itex]+w[itex]_{1}[/itex]|+...+|x[itex]_{n}[/itex]+w[itex]_{n}[/itex]|)[itex]^{2}[/itex]+(|x[itex]_{1}[/itex]-w[itex]_{1}[/itex]}+...+|x[itex]_{n}[/itex]-w[itex]_{n}[/itex]|[itex])^{2}[/itex]=2(|x[itex]_{1}[/itex]|+...+|x[itex]_{n}[/itex]|)[itex]^{2}[/itex]+(|w[itex]_{1}[/itex]|+...+|w[itex]_{n}[/itex]|)[itex]^{2}[/itex]Im not sure how to work with this. Am I going about this wrong?
Also there might be some typos with the absolute value signs the latex get messy