- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
Let $K \leq K(a)$ a field extension with $[K(a):K]=n$.
$K(a)$ is a vector space over $K$.
How can I show that the map $\varphi : K(a) \rightarrow K(a)$, with $\varphi(e)=ae$, is a $K-$linear map??
Let $K \leq K(a)$ a field extension with $[K(a):K]=n$.
$K(a)$ is a vector space over $K$.
How can I show that the map $\varphi : K(a) \rightarrow K(a)$, with $\varphi(e)=ae$, is a $K-$linear map??