- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
I have to show that the set $$A=\{f(x) \in \mathbb{Q}[x], f(i)=0\}$$ is an ideal of the ring $\mathbb{Q}[x]$ and I have to express it in the form $<f(x)>$.
I have done the following:
To show that $A=\{f(x) \in \mathbb{Q}[x], f(i)=0\}$ is an ideal of the ring $\mathbb{Q}[x]$, we have to show that:
1. $\forall f(x) \in A, g(x) \in \mathbb{Q}[x], g(x) \cdot f(x) \in A $
2. $\forall f(x) \in A, g(x) \in \mathbb{Q}[x], f(x) \cdot g(x) \in A $
3. $\forall h(x), f(x) \in A, h(x)-f(x) \in A $1. $f(x) \in A$, so $f(x) \in \mathbb{Q}[x]$ and $f(i)=0 $
$g(x) \in \mathbb{Q}[x] $
Since $f(x) \in \mathbb{Q}[x]$ and $g(x) \in \mathbb{Q}[x]$ and since $\mathbb{Q}$ is a ring, it implies that $g(x) \cdot f(x) \in \mathbb{Q}[x]$.
$g(i) \cdot f(i)=g(i) \cdot 0=0 $
Therefore, $g(x) \cdot f(x) \in A$. 2. $f(x) \in A$, so $f(x) \in \mathbb{Q}[x]$ and $f(i)=0 $
$g(x) \in \mathbb{Q}[x] $
Since $g(x) \in \mathbb{Q}[x]$ and $f(x) \in \mathbb{Q}[x]$ and since $\mathbb{Q}$ is a ring, it implies that $f(x) \cdot g(x) \in \mathbb{Q}[x] $.
$f(i) \cdot g(i)=0 \cdot g(i)=0 $
Therefore, $f(x) \cdot g(x) \in A$. 3. $f(x) \in A$, so $f(x) \in \mathbb{Q}[x]$ and $f(i)=0 $
$h(x) \in A$, so $h(x) \in \mathbb{Q}[x]$ and $h(i)=0 $
Since $f(x) \in \mathbb{Q}[x]$ and $h(x) \in \mathbb{Q}[x]$ and since $\mathbb{Q}$ is a ring, it implies that $h(x) - f(x) \in \mathbb{Q}[x]$.
$h(i) -f(i)=0-0=0 $
Therefore, $h(x) -f(x) \in A$. Therefore, $A$ is an ideal.
Is this correct?? (Wondering)How can I write the ideal $A$ in the form $<f(x)>$?? (Wondering)
I have to show that the set $$A=\{f(x) \in \mathbb{Q}[x], f(i)=0\}$$ is an ideal of the ring $\mathbb{Q}[x]$ and I have to express it in the form $<f(x)>$.
I have done the following:
To show that $A=\{f(x) \in \mathbb{Q}[x], f(i)=0\}$ is an ideal of the ring $\mathbb{Q}[x]$, we have to show that:
1. $\forall f(x) \in A, g(x) \in \mathbb{Q}[x], g(x) \cdot f(x) \in A $
2. $\forall f(x) \in A, g(x) \in \mathbb{Q}[x], f(x) \cdot g(x) \in A $
3. $\forall h(x), f(x) \in A, h(x)-f(x) \in A $1. $f(x) \in A$, so $f(x) \in \mathbb{Q}[x]$ and $f(i)=0 $
$g(x) \in \mathbb{Q}[x] $
Since $f(x) \in \mathbb{Q}[x]$ and $g(x) \in \mathbb{Q}[x]$ and since $\mathbb{Q}$ is a ring, it implies that $g(x) \cdot f(x) \in \mathbb{Q}[x]$.
$g(i) \cdot f(i)=g(i) \cdot 0=0 $
Therefore, $g(x) \cdot f(x) \in A$. 2. $f(x) \in A$, so $f(x) \in \mathbb{Q}[x]$ and $f(i)=0 $
$g(x) \in \mathbb{Q}[x] $
Since $g(x) \in \mathbb{Q}[x]$ and $f(x) \in \mathbb{Q}[x]$ and since $\mathbb{Q}$ is a ring, it implies that $f(x) \cdot g(x) \in \mathbb{Q}[x] $.
$f(i) \cdot g(i)=0 \cdot g(i)=0 $
Therefore, $f(x) \cdot g(x) \in A$. 3. $f(x) \in A$, so $f(x) \in \mathbb{Q}[x]$ and $f(i)=0 $
$h(x) \in A$, so $h(x) \in \mathbb{Q}[x]$ and $h(i)=0 $
Since $f(x) \in \mathbb{Q}[x]$ and $h(x) \in \mathbb{Q}[x]$ and since $\mathbb{Q}$ is a ring, it implies that $h(x) - f(x) \in \mathbb{Q}[x]$.
$h(i) -f(i)=0-0=0 $
Therefore, $h(x) -f(x) \in A$. Therefore, $A$ is an ideal.
Is this correct?? (Wondering)How can I write the ideal $A$ in the form $<f(x)>$?? (Wondering)