- #1
Mr Davis 97
- 1,462
- 44
Homework Statement
Let ##K = \mathbb{Q} (1, a_1, a_2, \dots, a_n)##, which is the smallest field containing ##\mathbb{Q}## and ##a_1, a_2, \dots, a_n##, where each ##a_i## is the square root of a rational
number. Show that the cube root of 2 is not an element of K.
Homework Equations
The Attempt at a Solution
I need some pointers. I am thinking about making an argument with degrees. That is, looking at the degree of ##K## over ##\mathbb{Q}## and seeing how that relates to the degree of ##\mathbb{Q}(2^{1/3})## over ##\mathbb{Q}##, such as whether the latter is a divisor of the former.