- #1
kalish1
- 99
- 0
This problem has been on my mind for a while.
----------
**Problem:**
Show that **if**
\begin{equation}
|z_1+z_2+\dots+z_n| = |z_1| + |z_2| + \dots + |z_n|
\end{equation}
**then** $z_k/z_{\ell} \ge 0$ for any integers $k$ and $\ell$, $1 \leq k, \ell \leq n,$ for which $z_{\ell} \ne 0.$
----------
**Proposed solution:**
For the base case $n = 2,$ we want to find a condition for which $|z_1+z_2| = |z_1|+|z_2|.$ From the book and class discussions, we see that equality occurs if $z_1$ and $z_2$ are collinear. Now assume the statement is true for $n=m.$ That is, assume:
\begin{equation}
|z_1+z_2+\dots+z_m| = |z_1| + |z_2| + \dots + |z_m|
\end{equation}
if and only if $z_k/z_{\ell} \ge 0$ for all $1 \le k,\ell \le m$ when $z_{\ell} \neq 0.$
Let $m \ge 2.$ We need to show:
\begin{equation}
|z_1+z_2+\dots+z_m+z_{m+1}| = |z_1| + |z_2| + \dots + |z_m| + |z_{m+1}|
\end{equation}
if and only if $z_k/z_{\ell} \ge 0$ for all $1 \le k,\ell \le m+1$ when $z_{\ell} \neq 0.$
Let $z=z_1+\ldots+z_m.$ We have $$|z_1 + \ldots + z_{m+1}| = |z + z_{m+1}| \overset{(1)}{\leq} |z| + |z_{m+1}| \overset{(2)}{\leq} |z_1| + \ldots + |z_m| + |z_{m+1}|$$
$(1)$: Equality holds if and only if $z/z_{m+1} \ge 0$ when $z_{m+1} \neq 0$ (according to the base case)
$(2)$: Equality holds if and only if $z_k/z_{\ell} \ge 0$ for all $1 \le k,\ell \le m$ when $z_{\ell} \neq 0$ (according to the induction hypothesis)
So what we have so far is:
$$|z_1 + \ldots + z_{m+1}| = |z_1| + \ldots + |z_{m+1}|$$ if and only if
**$\dfrac{z_1 + \ldots + z_m}{z_{m+1}} \ge 0,$ when $z_{m+1} \neq 0,$ and $z_k/z_{\ell} \ge 0$ for all $1 \le k,\ell \le m,$ when $z_{\ell} \neq 0.$**
We need to show $\mathrm{bold \ statement} \implies z_k/z_{\ell} \ge 0 \ \mathrm{for \ all} \ 1 \le k,\ell \le m+1 \ \mathrm{when} \ z_{\ell} \neq 0.$
Assume $\mathrm{bold \ statement}$ holds. We need to show $z_k/z_{\ell} \ge 0$ for $\ell=m+1$ and $1 \le k \le m+1$ (when $z_{m+1} \neq 0$).
When $k=m+1,$ we have $z_{k}/z_{m+1}=z_{m+1}/z_{m+1}=1 \ge 0.$ Assume now that $k \le m.$ Assume that $z_{k} \neq 0.$
From $\mathrm{bold \ statement}$ we know that $z_1/z_k \ge 0, \ldots, z_m/z_k \ge 0$ implies $\dfrac{z_1+ \ldots +z_m}{z_k} \ge 0.$ Note that $$\dfrac{z_1+ \ldots +z_m}{z_k} = 0 \iff z_1 = \dots = z_m = 0.$$ But since $z_k \neq 0,$ we have $\dfrac{z_1+ \ldots +z_m}{z_k} \neq 0.$
Thus
$$\dfrac{z_k}{z_{m+1}} = \underbrace{\dfrac{z_1+\ldots+z_m}{z_{m+1}}}_{\ge 0 \ \mathrm{bold \ statement}}\cdot\dfrac{z_k}{z_1+\ldots+z_m} \ge 0.$$
----------
I wrote this solution, but my teacher did not approve of it, saying that there is too much extraneous information that doesn't answer the problem.
## How can I solve the problem with the following information:
$z_k = t_kz_1,$ for $z_1 \neq 0,$ so that $z_k$ and $z_1$ lie on the same ray for every $k?$
Thanks for any help.
This question has been crossposted here: http://math.stackexchange.com/questions/1200965/showing-that-equality-of-complex-numbers-implies-that-they-lie-on-the-same-ray
----------
**Problem:**
Show that **if**
\begin{equation}
|z_1+z_2+\dots+z_n| = |z_1| + |z_2| + \dots + |z_n|
\end{equation}
**then** $z_k/z_{\ell} \ge 0$ for any integers $k$ and $\ell$, $1 \leq k, \ell \leq n,$ for which $z_{\ell} \ne 0.$
----------
**Proposed solution:**
For the base case $n = 2,$ we want to find a condition for which $|z_1+z_2| = |z_1|+|z_2|.$ From the book and class discussions, we see that equality occurs if $z_1$ and $z_2$ are collinear. Now assume the statement is true for $n=m.$ That is, assume:
\begin{equation}
|z_1+z_2+\dots+z_m| = |z_1| + |z_2| + \dots + |z_m|
\end{equation}
if and only if $z_k/z_{\ell} \ge 0$ for all $1 \le k,\ell \le m$ when $z_{\ell} \neq 0.$
Let $m \ge 2.$ We need to show:
\begin{equation}
|z_1+z_2+\dots+z_m+z_{m+1}| = |z_1| + |z_2| + \dots + |z_m| + |z_{m+1}|
\end{equation}
if and only if $z_k/z_{\ell} \ge 0$ for all $1 \le k,\ell \le m+1$ when $z_{\ell} \neq 0.$
Let $z=z_1+\ldots+z_m.$ We have $$|z_1 + \ldots + z_{m+1}| = |z + z_{m+1}| \overset{(1)}{\leq} |z| + |z_{m+1}| \overset{(2)}{\leq} |z_1| + \ldots + |z_m| + |z_{m+1}|$$
$(1)$: Equality holds if and only if $z/z_{m+1} \ge 0$ when $z_{m+1} \neq 0$ (according to the base case)
$(2)$: Equality holds if and only if $z_k/z_{\ell} \ge 0$ for all $1 \le k,\ell \le m$ when $z_{\ell} \neq 0$ (according to the induction hypothesis)
So what we have so far is:
$$|z_1 + \ldots + z_{m+1}| = |z_1| + \ldots + |z_{m+1}|$$ if and only if
**$\dfrac{z_1 + \ldots + z_m}{z_{m+1}} \ge 0,$ when $z_{m+1} \neq 0,$ and $z_k/z_{\ell} \ge 0$ for all $1 \le k,\ell \le m,$ when $z_{\ell} \neq 0.$**
We need to show $\mathrm{bold \ statement} \implies z_k/z_{\ell} \ge 0 \ \mathrm{for \ all} \ 1 \le k,\ell \le m+1 \ \mathrm{when} \ z_{\ell} \neq 0.$
Assume $\mathrm{bold \ statement}$ holds. We need to show $z_k/z_{\ell} \ge 0$ for $\ell=m+1$ and $1 \le k \le m+1$ (when $z_{m+1} \neq 0$).
When $k=m+1,$ we have $z_{k}/z_{m+1}=z_{m+1}/z_{m+1}=1 \ge 0.$ Assume now that $k \le m.$ Assume that $z_{k} \neq 0.$
From $\mathrm{bold \ statement}$ we know that $z_1/z_k \ge 0, \ldots, z_m/z_k \ge 0$ implies $\dfrac{z_1+ \ldots +z_m}{z_k} \ge 0.$ Note that $$\dfrac{z_1+ \ldots +z_m}{z_k} = 0 \iff z_1 = \dots = z_m = 0.$$ But since $z_k \neq 0,$ we have $\dfrac{z_1+ \ldots +z_m}{z_k} \neq 0.$
Thus
$$\dfrac{z_k}{z_{m+1}} = \underbrace{\dfrac{z_1+\ldots+z_m}{z_{m+1}}}_{\ge 0 \ \mathrm{bold \ statement}}\cdot\dfrac{z_k}{z_1+\ldots+z_m} \ge 0.$$
----------
I wrote this solution, but my teacher did not approve of it, saying that there is too much extraneous information that doesn't answer the problem.
## How can I solve the problem with the following information:
$z_k = t_kz_1,$ for $z_1 \neq 0,$ so that $z_k$ and $z_1$ lie on the same ray for every $k?$
Thanks for any help.
This question has been crossposted here: http://math.stackexchange.com/questions/1200965/showing-that-equality-of-complex-numbers-implies-that-they-lie-on-the-same-ray