- #1
John Greger
- 34
- 1
Homework Statement
Consider the operator ##F_a(\hat{X}) =e^{ia \hat{p} / \hbar} \cdot F(\hat{X}) e^{-ia \hat{p} / \hbar}## where a is real.
Show that ##\frac{d}{d_a} F_a(\hat{X}) \cdot \psi = F'(x) \psi## evaluated at a=0.
And what is the interpretation of the operator e^{i \hat{p_a} / \hbar}?
The Attempt at a Solution
By just starting taking the derivative I find that,
## \frac{d}{d_a} F_a(\hat{X}) = (\frac{i \hat{p}}{ \hbar}) e^{ia \hat{p} / \hbar} \cdot F(\hat{X}) e^{-ia \hat{p} / \hbar} - e^{ia \hat{p} / \hbar} \cdot F(\hat{X}) (\frac{i \hat{p}}{\hbar}) e^{-ia \hat{p} / \hbar} ##
Plugging a=0 gives,
## \frac{i}{h}[ \hat{p}, \hat{F}]##. But how do I take it from here to get the required form?And finally, what is the interpretation of ##e^{i \hat{p_a} / \hbar}##?
Thanks in advance!