- #1
kudoushinichi88
- 129
- 2
Homework Statement
We have
[tex]R_{iklm;n}+R_{iknl;m}+R_{ikmn;l} \equiv 0[/tex]
Show that by multiplying above with [itex]g^{im}g^{kn}[/itex]
we'll get
[tex]\left( R^{ik}-\frac{1}{2} g^{ik} R \right)_{;k}[/tex]
2. The attempt at a solution
[tex]g^{im}g^{kn} \left( R_{iklm;n}+R_{iknl;m}+R_{ikmn;l} \right) \equiv 0[/tex]
[tex]g^{im}R_{i} ^{n}_{lm;n}+g^{kn}R^{m}_{knl;m}+\frac{\partial R}{\partial x^l} \equiv 0 [/tex]
[tex]R^{n}_{l;n}+R^{m}_{l;m}+\frac{\partial R}{\partial x^l} \equiv 0[/tex]
then I'm stuck, not sure how to proceed. Honestly I'm not sure if my contractions are correct either. Please help?