- #1
Mr Davis 97
- 1,462
- 44
Homework Statement
Let V denote the set of ordered pairs of real numbers. If (x, y) and (w, z) are elements of V and a is a real scalar, define (x, y) + (w, z) = (x + w, yz) and a(x, y) = (ax, y). Is V a vector space?
Homework Equations
The Attempt at a Solution
Going through the vector space axioms everything is fine until we need to show that a zero vector exists.
Specifically, it is clearly evident that no such zero vector exists. However, how do we prove that no such zero vector exists, and hence it is not a vector space? For example, we can easily show that (0, 0) and (1, 1) do not work. However, this does not show that now pair will work (although clearly no pair will work).
Last edited: