- #1
Usagi
- 45
- 0
Show, using the $\epsilon-\delta$ definition of continuity, that the modified Dirichlet function, i.e., $f(x) = x$ if $x$ is rational and $f(x) = 0$ if $x$ is irrational, is discontinuous at all points $c \neq 0$
My attempt:
Is the following argument right (using the sequential definition of continuity?)
That is, consider any real $c \neq 0$, then, for $c\neq 0$, we can find some sequence $(x_n) \subset Q$ and $(y_n) \subset I$ such that $(x_n) \rightarrow c$ and $(y_n) \rightarrow c$ but $f(x_n) \rightarrow c$ and $f(y_n) \rightarrow 0$, thus $\lim_{x \rightarrow c} f(x)$ does not exist and hence is discontinuous at all points besides $0$.
Now how do I prove it using the definition? I.e, I need to show that $\exists$ $\epsilon_0 >0 \ \forall \ \delta >0 \ \exists x \in \mathbb{R}$, $|x-c| < \delta$ and $|f(x) - f(c)| \ge \epsilon_0$. How do I find the $\epsilon_0$?
My attempt:
Is the following argument right (using the sequential definition of continuity?)
That is, consider any real $c \neq 0$, then, for $c\neq 0$, we can find some sequence $(x_n) \subset Q$ and $(y_n) \subset I$ such that $(x_n) \rightarrow c$ and $(y_n) \rightarrow c$ but $f(x_n) \rightarrow c$ and $f(y_n) \rightarrow 0$, thus $\lim_{x \rightarrow c} f(x)$ does not exist and hence is discontinuous at all points besides $0$.
Now how do I prove it using the definition? I.e, I need to show that $\exists$ $\epsilon_0 >0 \ \forall \ \delta >0 \ \exists x \in \mathbb{R}$, $|x-c| < \delta$ and $|f(x) - f(c)| \ge \epsilon_0$. How do I find the $\epsilon_0$?