- #1
LagrangeEuler
- 717
- 20
Homework Statement
Show that
##\frac{1}{\pi}\lim_{\epsilon \to 0^+}\frac{\epsilon}{\epsilon^2+k^2}##
is representation of delta function.
Homework Equations
##\delta(x)=\frac{1}{2 \pi}\int^{\infty}_{-\infty}dke^{ikx}##
The Attempt at a Solution
##\int^{\infty}_{-\infty}\frac{\epsilon}{\epsilon^2+k^2}dk=\pi##
One can take ##F[e^{-\epsilon x}]## and then put ##\epsilon to go to zero +. Why ##0^+##. I'm confused?