- #1
happyparticle
- 456
- 21
- Homework Statement
- Sifting property of a Dirac delta inverse Mellin transformation
- Relevant Equations
- ##f(t) = \delta(t-a) ##
##\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-iwa}e^{iwt} dw = f(t) = \delta(t-a)##
##\int_{-\infty}^{\infty} f(x) \delta(x) dx = f(0)##
Hi,
I have to verify the sifting property of ##\frac{1}{2\pi i} \int_{-i\infty}^{i\infty} e^{-sa}e^{st} ds## which is the inverse Mellin transformation of the Dirac delta function ##f(t) = \delta(t-a) ##.
let ##s = iw## and ##ds = idw##
##\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-iwa}e^{iwt} dw = f(t) = \delta(t-a)## (1)
The sifting property says that if n -- > ##\infty## then ##\int_{-\infty}^{\infty} f(x) \delta(x) dx --> f(0)##
From (1),
##2 \pi \delta(t-a) = \int_{-\infty}^{\infty} e^{-iwa}e^{iwt} dw ##
Thus, my guess is that
##\int_{\infty}^{-\infty} f(t) \delta(t-a) dt = f(0)##
However, I don't see how to prove it.
I have to verify the sifting property of ##\frac{1}{2\pi i} \int_{-i\infty}^{i\infty} e^{-sa}e^{st} ds## which is the inverse Mellin transformation of the Dirac delta function ##f(t) = \delta(t-a) ##.
let ##s = iw## and ##ds = idw##
##\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-iwa}e^{iwt} dw = f(t) = \delta(t-a)## (1)
The sifting property says that if n -- > ##\infty## then ##\int_{-\infty}^{\infty} f(x) \delta(x) dx --> f(0)##
From (1),
##2 \pi \delta(t-a) = \int_{-\infty}^{\infty} e^{-iwa}e^{iwt} dw ##
Thus, my guess is that
##\int_{\infty}^{-\infty} f(t) \delta(t-a) dt = f(0)##
However, I don't see how to prove it.