- #1
Admiralibr123
- 14
- 5
I have heard many times that it does not matter where you put the zero to calculate the potential energy and then ##L=T-V##. But mostly what we are doing is taking potential energy negative like in an atom for electron or a mass in gravitational field and then effectively adding it to kinetic energy. What if I take zero at the centre of atom and on the surface of earth, write ##V## positive and subtract if in lagrangian. I try that and EOM is different something like $$F=ma=-mg$$ for a free fall object. If I change it for a charge an electron in atom something similar happens.
Please someone explain, does $$F=-mg \quad \textrm{vs} \quad F=+mg$$ not matter? This is just a single term but if the EOM have multiple terms, this sign would surely make a difference. And in essence to me, it feels like it voids the negative sign in ##L=T-V##, if we can choose any sign for V. That must definitely not be the case, so where am I wrong in my reasoning?
Please someone explain, does $$F=-mg \quad \textrm{vs} \quad F=+mg$$ not matter? This is just a single term but if the EOM have multiple terms, this sign would surely make a difference. And in essence to me, it feels like it voids the negative sign in ##L=T-V##, if we can choose any sign for V. That must definitely not be the case, so where am I wrong in my reasoning?