- #1
Angello90
- 65
- 0
From the lecture notes:
[tex]h[n] = \frac{1}{2}(\delta[n] + delta[n-1])[/tex]
via property:
[tex]H(e^{j\Omega})=\sum_{-\infty}^{\infty}h[k]e^{-j\Omega k}[/tex]
becomes:
[tex]H(e^{j\Omega})= \frac{1}{2}(1 + e^{-j\Omega})[/tex]
than my lecture divided by [tex]e^{\frac{-j\Omega}{2}}[/tex] resulting in:
[tex]H(e^{j\Omega})= e^{\frac{-j\Omega}{2}}[(e^{\frac{j\Omega}{2}} + e^{\frac{-j\Omega}{2}})/2][/tex]
Now he changed [tex](e^{\frac{j\Omega}{2}} + e^{\frac{-j\Omega}{2}})/2[/tex] to [tex]cos(\frac{\Omega}{2})[/tex]
How? Can anyone explain me? Also why [tex]\delta[n][/tex] is 1 but [tex]delta[n-1][/tex] is [tex]e^{\frac{-j \Omega}{2}}[/tex]?
[tex]h[n] = \frac{1}{2}(\delta[n] + delta[n-1])[/tex]
via property:
[tex]H(e^{j\Omega})=\sum_{-\infty}^{\infty}h[k]e^{-j\Omega k}[/tex]
becomes:
[tex]H(e^{j\Omega})= \frac{1}{2}(1 + e^{-j\Omega})[/tex]
than my lecture divided by [tex]e^{\frac{-j\Omega}{2}}[/tex] resulting in:
[tex]H(e^{j\Omega})= e^{\frac{-j\Omega}{2}}[(e^{\frac{j\Omega}{2}} + e^{\frac{-j\Omega}{2}})/2][/tex]
Now he changed [tex](e^{\frac{j\Omega}{2}} + e^{\frac{-j\Omega}{2}})/2[/tex] to [tex]cos(\frac{\Omega}{2})[/tex]
How? Can anyone explain me? Also why [tex]\delta[n][/tex] is 1 but [tex]delta[n-1][/tex] is [tex]e^{\frac{-j \Omega}{2}}[/tex]?