MHB Simple cylindrical coords problem

  • Thread starter Thread starter ognik
  • Start date Start date
  • Tags Tags
    Cylindrical
ognik
Messages
626
Reaction score
2
Rigid body rotating about a fixed axis with constant $\omega$ along the z axis. Express position vector $\vec{r}$ in cyl. circ. cords and using cyl. circ. cords find (a) $\vec{v}=\omega \times \vec{r}$ (b) $\nabla \times \vec{v}$

So $ \vec{r} = \vec{\rho}\rho + \vec{z}z $

(a) = $\begin{vmatrix}
\hat{\rho}&\hat{\phi}&\hat{z}\\0&0&\omega\\\ \rho&\ 0&z
\end{vmatrix} = \vec{\phi}\omega \rho $

But the solution shown is $ \vec{\phi} \omega \rho $? Shouldn't it be the unit vector $\hat{\phi}$?

(b) $ \nabla = \left( \partial_{\rho}, \frac{1}{\rho} \partial_{\phi}, \partial_z \right) $

$ \therefore \nabla \times \vec{v} =
\begin{vmatrix}
\hat{\rho}&\hat{\phi}&\hat{z}\\\partial_{\rho}, & \frac{1}{\rho} \partial_{\phi}, &\partial_z \\\ 0&\ \omega \rho & 0
\end{vmatrix}$
which is obviously not going to give me the answer in the book ($2\omega$), so what am I missing please? Also isn't the book's answer missing a direction?
 
Physics news on Phys.org
ognik said:
Rigid body rotating about a fixed axis with constant $\omega$ along the z axis. Express position vector $\vec{r}$ in cyl. circ. cords and using cyl. circ. cords find (a) $\vec{v}=\omega \times \vec{r}$ (b) $\nabla \times \vec{v}$

So $ \vec{r} = \vec{\rho}\rho + \vec{z}z $

(a) = $\begin{vmatrix}
\hat{\rho}&\hat{\phi}&\hat{z}\\0&0&\omega\\\ \rho&\ 0&z
\end{vmatrix} = \vec{\phi}\omega \rho $

But the solution shown is $ \vec{\phi} \omega \rho $? Shouldn't it be the unit vector $\hat{\phi}$?

(b) $ \nabla = \left( \partial_{\rho}, \frac{1}{\rho} \partial_{\phi}, \partial_z \right) $

$ \therefore \nabla \times \vec{v} =
\begin{vmatrix}
\hat{\rho}&\hat{\phi}&\hat{z}\\\partial_{\rho}, & \frac{1}{\rho} \partial_{\phi}, &\partial_z \\\ 0&\ \omega \rho & 0
\end{vmatrix}$
which is obviously not going to give me the answer in the book ($2\omega$), so what am I missing please? Also isn't the book's answer missing a direction?

Hi ognik,

I am not sure what your problem is with the first part. The solution you have obtained; $\vec{\phi} \omega \rho $ seems to be correct.

For the second part the notation $\nabla \times \vec{v}$ seems to indicate you have to find the Curl of $\vec{v}$ not the gradient.
 
Hi, thanks - must be a typo in the book for part a, left out the \hat, good to have confirmation.

Part b - oops, yes curl, which should be: $\frac{1}{\rho}\begin{vmatrix}
\hat{\rho}&\rho\hat{\phi}&\hat{z}\\ \partial_{\rho}&\partial_{\phi}&\partial_z \ \\0&\rho \omega \rho &0
\end{vmatrix}$ for $ \vec{v}=\hat{\phi}\omega \rho $

I get $ \nabla \times \vec{v} = \hat{z}2\omega $, the book again appears to have a typo - no $\hat{z}$, assume mine is OK? Thanks for the help.
 
ognik said:
Hi, thanks - must be a typo in the book for part a, left out the \hat, good to have confirmation.

Part b - oops, yes curl, which should be: $\frac{1}{\rho}\begin{vmatrix}
\hat{\rho}&\rho\hat{\phi}&\hat{z}\\ \partial_{\rho}&\partial_{\phi}&\partial_z \ \\0&\rho \omega \rho &0
\end{vmatrix}$ for $ \vec{v}=\hat{\phi}\omega \rho $

I get $ \nabla \times \vec{v} = \hat{z}2\omega $, the book again appears to have a typo - no $\hat{z}$, assume mine is OK? Thanks for the help.

Well, the Curl should always be a vector. If the book only asks for the magnitude of Curl the answer is $2\omega$ otherwise the vector component should be included. :)
 
For original Zeta function, ζ(s)=1+1/2^s+1/3^s+1/4^s+... =1+e^(-slog2)+e^(-slog3)+e^(-slog4)+... , Re(s)>1 Riemann extended the Zeta function to the region where s≠1 using analytical extension. New Zeta function is in the form of contour integration, which appears simple but is actually more inconvenient to analyze than the original Zeta function. The original Zeta function already contains all the information about the distribution of prime numbers. So we only handle with original Zeta...
Back
Top