- #1
Marin
- 193
- 0
Hi there!
I was trying to solve an equation but got very perplexed by the fact that a certain number x=0 is both a solution and no solution:
Here´s the equation:
[tex](x-a)[(x-a)^2+y^2+z^2]^{-3/2}+(x+a)[(x+a)^2+y^2+z^2]^{-3/2}=0[/tex]
assume y=z=0:
Now, the equation becomes:
[tex](x-a)[(x-a)^2]^{-3/2}+(x+a)[(x+a)^2]^{-3/2}=0[/tex]
I guessed a solution at x=0
check: [tex]-a[(-a)^2]^{-3/2}+a[a^2]^{-3/2}=-a[a^2]^{-3/2}+a[a^2]^{-3/2}=0[/tex], ok I assume it´s true
Now let´s use the exponent rule: (a^x)^y=a^(xy)
Then the equation becomes:
(*) [tex](x-a)(x-a)^{-3}+(x+a)(x+a)^{-3}=0[/tex], or
[tex](x-a)^{-2}+(x+a)^{-2}=0[/tex]
Ok, plug once again x=0 and there comes the surprise:
[tex](-a)^{-2}+(+a)^{-2}=1/a^2+1/a^2[/tex] is not equal to 0!
What is more, if you make the substitution x=0 in (*), i.e. before you contract terms, you end up with: [tex](-a)^{-4}+(+a)^{-2}=1/a^4+1/a^2[/tex] again not equal to 0, but an entirely different expression!
I guess I´m doing it wrong with the powers and exponents, but I cannot figure out where my mistakes are.
If you see it, please be kind and tell me!
Thanks a lot!
I was trying to solve an equation but got very perplexed by the fact that a certain number x=0 is both a solution and no solution:
Here´s the equation:
[tex](x-a)[(x-a)^2+y^2+z^2]^{-3/2}+(x+a)[(x+a)^2+y^2+z^2]^{-3/2}=0[/tex]
assume y=z=0:
Now, the equation becomes:
[tex](x-a)[(x-a)^2]^{-3/2}+(x+a)[(x+a)^2]^{-3/2}=0[/tex]
I guessed a solution at x=0
check: [tex]-a[(-a)^2]^{-3/2}+a[a^2]^{-3/2}=-a[a^2]^{-3/2}+a[a^2]^{-3/2}=0[/tex], ok I assume it´s true
Now let´s use the exponent rule: (a^x)^y=a^(xy)
Then the equation becomes:
(*) [tex](x-a)(x-a)^{-3}+(x+a)(x+a)^{-3}=0[/tex], or
[tex](x-a)^{-2}+(x+a)^{-2}=0[/tex]
Ok, plug once again x=0 and there comes the surprise:
[tex](-a)^{-2}+(+a)^{-2}=1/a^2+1/a^2[/tex] is not equal to 0!
What is more, if you make the substitution x=0 in (*), i.e. before you contract terms, you end up with: [tex](-a)^{-4}+(+a)^{-2}=1/a^4+1/a^2[/tex] again not equal to 0, but an entirely different expression!
I guess I´m doing it wrong with the powers and exponents, but I cannot figure out where my mistakes are.
If you see it, please be kind and tell me!
Thanks a lot!