- #1
Irishdoug
- 102
- 16
- Homework Statement
- Self studying Quantum Mechanics. I've a finite square well. Inside the well the V(x) = 0. Thus the problem becomes that of the free particle. I'm aware the solution to the SE is Asinkx + Bcoskx however I can't figure out how.
- Relevant Equations
- ##\psi ##'' = ##-k^2 \psi ## were k = ##(2mE)^{0.5}## / ##\hbar##
I've tried to carry out the solution to this as a normal 2nd order Differential Equation
##\psi ##'' - ##-k^2 \psi ## = 0
Assume solution has form ##e^{\gamma x}##
sub this in form ##\psi## and get
##\gamma ^2## ##e^{\gamma x} ## + ##k^2 e^{\gamma x}## = 0
Solution is ##\gamma## = 0 or ##k^2##
Now have two real roots that are not equal thus have
c1##e^{\gamma_1 x}## + c2##e^{\gamma_2 x}##
I presume this is wrong, as I cannot figure out how to turn it into c1sinkx +c2coskx.
I'm aware of Eulers equation but I've no imaginary number and just using the real part means I've no sin term.
##\psi ##'' - ##-k^2 \psi ## = 0
Assume solution has form ##e^{\gamma x}##
sub this in form ##\psi## and get
##\gamma ^2## ##e^{\gamma x} ## + ##k^2 e^{\gamma x}## = 0
Solution is ##\gamma## = 0 or ##k^2##
Now have two real roots that are not equal thus have
c1##e^{\gamma_1 x}## + c2##e^{\gamma_2 x}##
I presume this is wrong, as I cannot figure out how to turn it into c1sinkx +c2coskx.
I'm aware of Eulers equation but I've no imaginary number and just using the real part means I've no sin term.
Last edited: