- #1
Neodudeman
- 2
- 0
Homework Statement
There's a block attached to a spring on a frictionless surface that oscillates back and forth. (Assume no damping).
At t=0, the potential energy in the spring is 25% of the maximum potential energy.
Kinetic energy decreases with time at t=0, and at t=2, the kinetic energy becomes 0 for the first time.
Determine the frequency of this motion.
Homework Equations
[tex]\frac{1}{2}[/tex]mv2 + [tex]\frac{1}{2}[/tex]kx2 = Enet
x(t) = Acos([tex]\omega[/tex]*t+[tex]\phi[/tex]o)
The Attempt at a Solution
Ok. In order to get Frequency, we need the Period. To get the period, we solve for [tex]\omega[/tex] by using the position function.
To use the position function, we must first find [tex]\phi[/tex].
So, according to the data, at t=0, the PE is 25% of the maximum potential energy. We know that the maximum potential energy is actually equal to [tex]\frac{1}{2}[/tex]kA2. Thus, 25% of the maximum potential energy is equal to [tex]\frac{1}{4}[/tex]*[tex]\frac{1}{2}[/tex]*kA2.
Therefore, at t=0, [tex]\frac{1}{4}[/tex]*[tex]\frac{1}{2}[/tex]*kA2=[tex]\frac{1}{2}[/tex]kx2.
Solving for x, we get that x=[tex]\frac{1}{2}[/tex]A.
Putting that into the position function,
@t=0
[tex]\frac{1}{2}[/tex]A=Acos([tex]\omega[/tex]*0+[tex]\phi[/tex])
[tex]\frac{1}{2}[/tex]=cos([tex]\phi[/tex])
acos([tex]\frac{1}{2}[/tex]=[tex]\phi[/tex])
[tex]\phi[/tex]=[tex]\pi[/tex]/3
Now, solving for [tex]\omega[/tex] and the period.
And this is where I have a problem...
x(t)=A*cos([tex]\omega[/tex]*t+[tex]\phi[/tex])
At t=2, the potential energy is max, meaning the kinetic energy is 0. Thus, the position x is equal to the amplitude A.
A=A*cos([tex]\omega[/tex]*2+[tex]\pi[/tex]/3)
Divide by A, and [tex]\omega[/tex] = 2[tex]\pi[/tex]/T
1=cos(4[tex]\pi[/tex]/T+[tex]\pi[/tex]/3)
Acos(1) = 0
0 = 4[tex]\pi[/tex]/T+[tex]\pi[/tex]/3
Subtracting by [tex]\pi[/tex]/3
-[tex]\pi[/tex]/3 = 4[tex]\pi[/tex]/T
-1/3=4/T
This gives us:
T=-12
Which, I'm 90% sure, we cannot have.
A negative period gives a negative frequency. Where did I mess up in this problem? :/