- #1
Nenad
- 698
- 0
Hello everyone, I am having some trouble with an integral.
[tex] \int \sqrt{x^2 - 1} dx [/tex]
so far:
[tex] x = sec \theta [/tex]
[tex] \frac{dx}{d \theta} = sec \theta tan \theta [/tex]
[tex] dx = sec \theta tan \theta d\theta [/tex]
now we substitute:
[tex] \int \sqrt{x^2 - 1} dx [/tex]
[tex]= \int \sqrt{sec^2 \theta - 1} sec \theta tan \theta d \theta [/tex]
since [tex] sec^2 \theta - 1 = tan^2 \theta [/tex]
[tex]= \int \sqrt{sec^2 \theta - 1} sec \theta tan \theta d \theta = \int \sqrt{tan^2 \theta} sec \theta tan \theta d \theta [/tex]
[tex]= \int tan^2 \theta sec \theta d \theta [/tex]
this is where I am stuck. A hint would be appreciated. Thanks in advance
Regards,
Nenad
[tex] \int \sqrt{x^2 - 1} dx [/tex]
so far:
[tex] x = sec \theta [/tex]
[tex] \frac{dx}{d \theta} = sec \theta tan \theta [/tex]
[tex] dx = sec \theta tan \theta d\theta [/tex]
now we substitute:
[tex] \int \sqrt{x^2 - 1} dx [/tex]
[tex]= \int \sqrt{sec^2 \theta - 1} sec \theta tan \theta d \theta [/tex]
since [tex] sec^2 \theta - 1 = tan^2 \theta [/tex]
[tex]= \int \sqrt{sec^2 \theta - 1} sec \theta tan \theta d \theta = \int \sqrt{tan^2 \theta} sec \theta tan \theta d \theta [/tex]
[tex]= \int tan^2 \theta sec \theta d \theta [/tex]
this is where I am stuck. A hint would be appreciated. Thanks in advance
Regards,
Nenad