- #1
dexter90
- 14
- 0
Hello.
I have equation:
[tex]\frac{\partial T}{\partial t}-\frac{1}{2}\cdot \frac{(\partial)^2 T}{\partial x^2}=0[/tex]
I calculated determinant:
[tex]\Delta=(-\frac{1}{2})^2)-4\cdot 1 \cdot 0 \Rightarrow \sqrt{\Delta}=\frac{1}{2} \\ (\frac{dT}{dt})_{1}=-\frac{1}{4} \\ (\frac{dT}{dt})_{2}=\frac{1}{4}[/tex]
next
[tex]T=-\frac{1}{4}t+C_{1} \Rightarrow T+\frac{1}{4}t=C_{1} \\ T=\frac{1}{4}t+C_{2} \Rightarrow T-\frac{1}{4}t=C_{2}[/tex]
I am add a new coefficients [tex]\eta[/tex] and [tex]\xi[/tex], then
[tex]\xi=\frac{1}{4}t+T\\ \eta=-\frac{1}{4}t+T[/tex]
Then I calculated matrix jacobian's =[tex]\frac{1}{2}[/tex]
Good?
I greet
Post edited
I have equation:
[tex]\frac{\partial T}{\partial t}-\frac{1}{2}\cdot \frac{(\partial)^2 T}{\partial x^2}=0[/tex]
I calculated determinant:
[tex]\Delta=(-\frac{1}{2})^2)-4\cdot 1 \cdot 0 \Rightarrow \sqrt{\Delta}=\frac{1}{2} \\ (\frac{dT}{dt})_{1}=-\frac{1}{4} \\ (\frac{dT}{dt})_{2}=\frac{1}{4}[/tex]
next
[tex]T=-\frac{1}{4}t+C_{1} \Rightarrow T+\frac{1}{4}t=C_{1} \\ T=\frac{1}{4}t+C_{2} \Rightarrow T-\frac{1}{4}t=C_{2}[/tex]
I am add a new coefficients [tex]\eta[/tex] and [tex]\xi[/tex], then
[tex]\xi=\frac{1}{4}t+T\\ \eta=-\frac{1}{4}t+T[/tex]
Then I calculated matrix jacobian's =[tex]\frac{1}{2}[/tex]
Good?
I greet
Post edited
Last edited: