Simplify a trigonometric expression

In summary, the conversation discussed a slight typo in the original problem statement and a different solution to simplify the expression $\left(\sqrt{3}\sec \dfrac{\pi}{5}+\tan\dfrac{\pi}{30}\right)\tan \dfrac{2\pi}{15}$. The participants apologized for the mistake and thanked each other for sharing their solutions.
  • #1
anemone
Gold Member
MHB
POTW Director
3,883
115
Simplify $\left(\sqrt{3}\sec \dfrac{\pi}{5}+\tan\dfrac{2\pi}{5}\right)\tan \dfrac{2\pi}{15}$.
 
Mathematics news on Phys.org
  • #2
Here is my work

$ \left( \sqrt{3} \sec \frac{\pi}{5} + \tan \frac{2\pi}{5}\right) \tan \frac{2\pi}{15}$
 
Last edited by a moderator:
  • #3
Amer said:
Here is my work

$ \left( \sqrt{3} \sec \frac{\pi}{5} + \tan \frac{2\pi}{5}\right) \tan \frac{2\pi}{15}$

Hi Amer,

I suspect you might not aware that you have not posted your solution due to some unforeseen technical problem, is that true?
 
  • #4
I want to apologize for the careless typo in the original problem statement. I wish I would have noticed it much earlier...

The problem should read:

Simplify $\left(\sqrt{3}\sec \dfrac{\pi}{5}+\tan\dfrac{\pi}{30}\right)\tan \dfrac{2\pi}{15}$.
 
  • #5
My solution:

The problem can also be interepreted as to simplify

$\begin{align*}(\sqrt{3}\sec 36^{\circ}+\tan6^{\circ})\tan 24^{\circ}&=(\dfrac{\sqrt{3}}{\cos 36^{\circ}}+\tan6^{\circ})\tan 24^{\circ}\\&=\dfrac{\sqrt{3}\tan 24^{\circ}}{\cos 36^{\circ}}+\tan6^{\circ}\tan 24^{\circ}\end{align*}$

It's really hard to "predict" what would be the next best step to simplify the given expression, but my plan of attack is to find an expression that relates between $\tan 24^{\circ}$ and $\cos 36^{\circ}$.

From the identity
$\tan (90^{\circ}-y)=\dfrac{1}{\tan y}$and$\tan x \tan (60^{\circ}-x) \tan (60^{\circ}-x)=\tan 3x$, we see that if we set $x=24^{\circ}$, we have


$\tan 24^{\circ} \tan 36^{\circ} \tan 84^{\circ}=\tan 72^{\circ}$

$\tan 24^{\circ} \tan 36^{\circ} \dfrac{1}{\tan 6^{\circ}}=\dfrac{1}{\tan 18^{\circ}}$

$\tan 24^{\circ} \tan 36^{\circ} \tan 18^{\circ}=\tan 6^{\circ}$

$\tan 24^{\circ} \dfrac{\sin 36^{\circ}}{\cos 36^{\circ}} \dfrac{\sin 18^{\circ}}{\cos 18^{\circ}}=\tan 6^{\circ}$

$\tan 24^{\circ} \dfrac{2\sin 18^{\circ}\cancel{\cos 18^{\circ}}}{\cos 36^{\circ}} \dfrac{\sin 18^{\circ}}{\cancel{\cos 18^{\circ}}}=\tan 6^{\circ}$

$\tan 24^{\circ}(2\sin^2 18^{\circ})=\tan 6^{\circ}\cos 36^{\circ}$

$\tan 24^{\circ}(1-\cos 36^{\circ})=\tan 6^{\circ}\cos 36^{\circ}$

$\dfrac{\sqrt{3}\tan 24^{\circ}}{\cos 36^{\circ}}=1-(\tan 6^{\circ}\tan 24^{\circ})$

$\begin{align*}\therefore (\sqrt{3}\sec 36^{\circ}+\tan6^{\circ})\tan 24^{\circ}&=\dfrac{\sqrt{3}\tan 24^{\circ}}{\cos 36^{\circ}}+\tan6^{\circ}\tan 24^{\circ}\\&=1-(\tan 6^{\circ}\tan 24^{\circ})+\tan6^{\circ}\tan 24^{\circ}\\&=1\end{align*}$
 
  • #6
My solution
Let $\displaystyle x = \frac{\pi}{30}$

The expression with the assumption above

$ \left( \sqrt{3} \sec 6x + \tan x \right) \tan 4x $

$\displaystyle \frac{\sqrt{3} \cos(x) \sin(4x) + \sin(x) \sin(4x) \cos(6x)}{\cos (6x) \cos(4x) \cos(x)}$

$\displaystyle \frac{ \sqrt{3}/2 ( \sin (5x) + \sin (3x) ) + 0.5 \cos(6x) ( \cos(3x) - \cos(5x) ) }{\cos (6x) \cos(4x) \cos(x)}$

Since $5x = \frac{\pi}{6}$

$\displaystyle \frac{\sqrt{3}/2 ( 1/2 + \sin (3x) ) +0.5 \cos(6x) ( \cos(3x) - \sqrt{3}/2) }{\cos (6x) \cos(4x) \cos(x)} $

$\displaystyle \frac{\sqrt{3} + 2\sqrt{3} \sin(3x) + \cos(6x) (2\cos(3x) - \sqrt{3} )}{\cos(6x) (\sqrt{3} + 2\cos(3x))}$

$\displaystyle \frac{\sqrt{3} + 2\sqrt{3} \sin(3x)- 2\sqrt{3}\cos(6x) + \cos(6x) (2\cos(3x) + \sqrt{3} )}{\cos(6x) (\sqrt{3} + 2\cos(3x))} = \frac{\sqrt{3} + 2\sqrt{3} \sin(3x)- 2\sqrt{3}\cos(6x)}{\cos(6x) (\sqrt{3} + 2\cos(3x))} +1 = 1 $

Since
$\displaystyle 1 + 2 \sin(3x) - 2 \cos (6x) = 1 + \frac{2}{4} ( \sqrt{5} -1) - \frac{2}{4} ( 1 + \sqrt{5}) = 0 $
 
  • #7
Amer said:
My solution
Let $\displaystyle x = \frac{\pi}{30}$

The expression with the assumption above

$ \left( \sqrt{3} \sec 6x + \tan x \right) \tan 4x $

$\displaystyle \frac{\sqrt{3} \cos(x) \sin(4x) + \sin(x) \sin(4x) \cos(6x)}{\cos (6x) \cos(4x) \cos(x)}$

$\displaystyle \frac{ \sqrt{3}/2 ( \sin (5x) + \sin (3x) ) + 0.5 \cos(6x) ( \cos(3x) - \cos(5x) ) }{\cos (6x) \cos(4x) \cos(x)}$

Since $5x = \frac{\pi}{6}$

$\displaystyle \frac{\sqrt{3}/2 ( 1/2 + \sin (3x) ) +0.5 \cos(6x) ( \cos(3x) - \sqrt{3}/2) }{\cos (6x) \cos(4x) \cos(x)} $

$\displaystyle \frac{\sqrt{3} + 2\sqrt{3} \sin(3x) + \cos(6x) (2\cos(3x) - \sqrt{3} )}{\cos(6x) (\sqrt{3} + 2\cos(3x))}$

$\displaystyle \frac{\sqrt{3} + 2\sqrt{3} \sin(3x)- 2\sqrt{3}\cos(6x) + \cos(6x) (2\cos(3x) + \sqrt{3} )}{\cos(6x) (\sqrt{3} + 2\cos(3x))} = \frac{\sqrt{3} + 2\sqrt{3} \sin(3x)- 2\sqrt{3}\cos(6x)}{\cos(6x) (\sqrt{3} + 2\cos(3x))} +1 = 1 $

Since
$\displaystyle 1 + 2 \sin(3x) - 2 \cos (6x) = 1 + \frac{2}{4} ( \sqrt{5} -1) - \frac{2}{4} ( 1 + \sqrt{5}) = 0 $

Thanks Amer for participating and I am glad to receive another solution that works differently than mine.:)
 

FAQ: Simplify a trigonometric expression

What is a trigonometric expression?

A trigonometric expression is a mathematical expression that contains trigonometric functions, such as sine, cosine, tangent, and their inverses.

Why is it important to simplify a trigonometric expression?

Simplifying a trigonometric expression can make it easier to work with and understand. It can also help identify patterns and relationships between different trigonometric functions.

What are the steps to simplify a trigonometric expression?

The general steps to simplify a trigonometric expression are:
1. Use trigonometric identities to rewrite the expression in a simpler form.
2. Simplify any fractions or rational expressions.
3. Combine like terms.
4. Factor out common terms.
5. Check for any remaining simplifications that can be made.

Can all trigonometric expressions be simplified?

Not all trigonometric expressions can be simplified to a simpler form. Some expressions may already be in their simplest form, while others may require advanced techniques to simplify.

What are some common trigonometric identities used to simplify expressions?

Some common trigonometric identities used to simplify expressions include:
- Pythagorean identities
- Double-angle identities
- Half-angle identities
- Sum and difference identities
- Reciprocal identities
- Quotient identities

Similar threads

Replies
1
Views
973
Replies
1
Views
841
Replies
3
Views
966
Replies
14
Views
1K
Replies
2
Views
983
Replies
1
Views
908
Replies
1
Views
839
Replies
1
Views
2K
Back
Top