- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
Simplify cos(a)cos(2a)cos(3a)...cos(999a) if a=(2pi)/1999
I don't see any way to approach this problem but my attempt is to group cos(a).cos(999a), then cos(2a).cos(998a), and so on.
Then I get 500 pairs where the first two pairs are 1/2[cos(100a)+cos(998a)] and 1/2[cos(100a)+cos(996a)], and etc.
Next, I see that cos(a)cos(2a)cos(3a)...cos(999a)= 1/2^500[[cos(100a)+cos(998a)][cos(100a)+cos(996a)][cos(100a)+cos(994a)][...].
Now, I'm stuck. I don't know how to proceed.
Any help, please?
I don't see any way to approach this problem but my attempt is to group cos(a).cos(999a), then cos(2a).cos(998a), and so on.
Then I get 500 pairs where the first two pairs are 1/2[cos(100a)+cos(998a)] and 1/2[cos(100a)+cos(996a)], and etc.
Next, I see that cos(a)cos(2a)cos(3a)...cos(999a)= 1/2^500[[cos(100a)+cos(998a)][cos(100a)+cos(996a)][cos(100a)+cos(994a)][...].
Now, I'm stuck. I don't know how to proceed.
Any help, please?