- #1
Ad VanderVen
- 169
- 13
- TL;DR Summary
- Simplifying a double summation.
Is it possible to simplify the function below so that the sums disappear.
$$\displaystyle g \left(x \right) \, = \, \sum _{j=-\infty}^{\infty} \left(-A +B \right) \sum _{k=-\infty}^{\infty} \frac{1}{2}~\frac{\sqrt{2}~e^{-\frac{1}{2}~\frac{\left(x -k \right)^{2}}{\sigma ^{2}}}~\left(U -V \right)}{\sigma ~\sqrt{\pi }}$$
with
$$\displaystyle A\, = \,1/2\,{\rm erf} \left(1/2\,{\frac { \sqrt{2} \left( -j-1/2+{\it omicron} \right) }{\rho}}\right),$$
$$\displaystyle B\, = \,1/2\,{\rm erf} \left(1/2\,{\frac { \sqrt{2} \left( -j+1/2+{\it omicron} \right) }{\rho}}\right),$$
$$\displaystyle U\, = \,1/2\,{\rm erf} \left(1/4\,{\frac { \sqrt{2} \left( -2\,bj+2\,k+1 \right) }{\tau}}\right)$$
and
$$\displaystyle V\, = \,1/2\,{\rm erf} \left(1/4\,{\frac { \sqrt{2} \left( -2\,bj+2\,k-1 \right) }{\tau}}\right)$$
$$\displaystyle g \left(x \right) \, = \, \sum _{j=-\infty}^{\infty} \left(-A +B \right) \sum _{k=-\infty}^{\infty} \frac{1}{2}~\frac{\sqrt{2}~e^{-\frac{1}{2}~\frac{\left(x -k \right)^{2}}{\sigma ^{2}}}~\left(U -V \right)}{\sigma ~\sqrt{\pi }}$$
with
$$\displaystyle A\, = \,1/2\,{\rm erf} \left(1/2\,{\frac { \sqrt{2} \left( -j-1/2+{\it omicron} \right) }{\rho}}\right),$$
$$\displaystyle B\, = \,1/2\,{\rm erf} \left(1/2\,{\frac { \sqrt{2} \left( -j+1/2+{\it omicron} \right) }{\rho}}\right),$$
$$\displaystyle U\, = \,1/2\,{\rm erf} \left(1/4\,{\frac { \sqrt{2} \left( -2\,bj+2\,k+1 \right) }{\tau}}\right)$$
and
$$\displaystyle V\, = \,1/2\,{\rm erf} \left(1/4\,{\frac { \sqrt{2} \left( -2\,bj+2\,k-1 \right) }{\tau}}\right)$$
Last edited: