Simplifying a Quotient with Real Number $a>1$

In summary: Thank you very much for your kindness and generosity in sharing your knowledge with me. In summary, the given quotient can be simplified to $\displaystyle \frac{1}{1 - 2^{1-a}}\ \zeta(a)$. Thank you.
  • #1
anemone
Gold Member
MHB
POTW Director
3,883
115
Simplify \(\displaystyle \frac{\Large 1+\frac{1}{2^a}+\frac{1}{3^a}+\frac{1}{4^a}+\cdots}{\Large1-\frac{1}{2^a}+\frac{1}{3^a}-\frac{1}{4^a}+\cdots}\) where $a>1$ is a real number.
 
Mathematics news on Phys.org
  • #2
Re: Simplying a quotient

anemone said:
Simplify \(\displaystyle \frac{\Large 1+\frac{1}{2^a}+\frac{1}{3^a}+\frac{1}{4^a}+\cdots}{\Large1-\frac{1}{2^a}+\frac{1}{3^a}-\frac{1}{4^a}+\cdots}\) where $a>1$ is a real number.

Is...

$\displaystyle 1 + \frac{1}{2^{a}} + \frac{1}{3^{a}} + \frac{1}{4^{a}} + ... = \zeta(a)\ (1)$

... and...

$\displaystyle 1 - \frac{1}{2^{a}} + \frac{1}{3^{a}} - \frac{1}{4^{a}} + ... = \zeta (a) - 2^{1-a}\ \zeta(a) = \zeta(a)\ (1 - 2^{1-a})\ (2)$

... so that...

Kind regards

$\chi$ $\sigma$
 
  • #3
Re: Simplying a quotient

chisigma said:
Is...

$\displaystyle 1 + \frac{1}{2^{a}} + \frac{1}{3^{a}} + \frac{1}{4^{a}} + ... = \zeta(a)\ (1)$

... and...

$\displaystyle 1 - \frac{1}{2^{a}} + \frac{1}{3^{a}} - \frac{1}{4^{a}} + ... = \zeta (a) - 2^{1-a}\ \zeta(a) = \zeta(a)\ (1 - 2^{1-a})\ (2)$

... so that...

Kind regards

$\chi$ $\sigma$

Hi chisigma,

Thanks for participating! I can tell that this problem seems like an easy one and probably doesn't count as a challenging problem to you and perhaps some other folks on the forum. :(

I will admit that I don't know what you mean by $\zeta(a)$. I solved the problem purely using an algebraic approach and here is my solution:
\(\displaystyle \frac{\large 1+\frac{1}{2^a}+\frac{1}{3^a}+\frac{1}{4^a}+\cdots}{\Large1-\frac{1}{2^a}+\frac{1}{3^a}-\frac{1}{4^a}+\cdots}=\frac{\large 1+\frac{1}{2^a}+\frac{1}{3^a}+\frac{1}{4^a}+\cdots}{\large\left(1+\frac{1}{3^a}+\frac{1}{5^a}+\cdots \right)-\left( \frac{1}{2^a}+\frac{1}{4^a}+\frac{1}{6^a}+\cdots \right)}\)

\(\displaystyle \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{\large 1+\frac{1}{2^a}+\frac{1}{3^a}+\frac{1}{4^a}+\cdots}{\large\left(1+\frac{1}{2^a}+\frac{1}{3^a}+\cdots \right)-2\left( \frac{1}{2^a}+\frac{1}{4^a}+\frac{1}{6^a}+\cdots \right)}\)

\(\displaystyle \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{\large 1+\frac{1}{2^a}+\frac{1}{3^a}+\frac{1}{4^a}+\cdots}{\large\left(1+\frac{1}{2^a}+\frac{1}{3^a}+\cdots \right)-\frac{2}{2^a}\left( 1+\frac{1}{2^a}+\frac{1}{3^a}+\cdots \right)}\)

\(\displaystyle \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{1}{\large1-\frac{2}{2^a}}\)

\(\displaystyle \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{2^a}{2^a-2}\)
 
  • #4
Re: Simplying a quotient

anemone said:
Hi chisigma,

Thanks for participating! I can tell that this problem seems like an easy one and probably doesn't count as a challenging problem to you and perhaps some other folks on the forum. :(

I will admit that I don't know what you mean by $\zeta(a)$...

Hi anemone

Your post is very interesting because illustrates a very important question in the field of complex function. The so called 'Riemann Zeta Function' for $\displaystyle \text{Re}\ (s) > 1$ is defined as...

$\displaystyle \zeta (s) = \sum_{n=1}^{\infty} \frac{1}{n^{s}}\ (1)$

A genial intuition of the Swiss mathematician Leonhard Euler was the fact that $\zeta(s)$ exists for every complex s with the only exception of s=1. Now the series in (1) diverges for $\displaystyle \text{Re}\ (s) \le 1$ and at first we don't see a way to write an explicit expression for $\zeta (s)$ in the left portion of the complex plane. A symple way however is to write the (1) as...

$\displaystyle \zeta(s) = 1 - \frac{1}{2^{s}} + \frac{1}{3^{s}} - \frac{1}{4^{s}} + ... +\ 2\ (\frac{1}{2^{s}} + \frac{1}{4^{s}} + \frac{1}{6^{s}} +...) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{s}} + 2^{1 - s}\ \zeta (s)\ (2)$

... and from (2)...

$\displaystyle \zeta(s) = \frac{1}{1 - 2^{1-s}}\ \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{s}}\ (3)$

The series in (3) converges for $\displaystyle \text{Re}\ (s) > 0$, so that the range of the $\zeta (s)$ has been extended. The German mathematician Bernard Riemann supposed that all the complex zeroes of $\zeta(s)$ lie on the line $\text{Re}\ (s) = \frac{1}{2}$ and the (3) permits to verify that. If Belle demonstrates that the Riemann's hypothesis is true, there is a rich premium of a million of dollars for Her! ;)...

Kind regards

$\chi$ $\sigma$
 
  • #5
Hi chisigma,

That is so nice of you to teach me the fundamentals of the zeta function and I really appreciate that and find that it is another very beautiful branch of mathematics which interests me and I hope to discover a beautiful way to prove that hypothesis to be true, even though my knowledge of mathematics is very limited as compared to ALL members of MHB. I am only joking, chisigma...:eek: How could I prove this elegant and lofty hypothesis to be true, based on my shallow knowledge?

But, I am very happy that you have taught me more about the zeta function, my friend!
 

FAQ: Simplifying a Quotient with Real Number $a>1$

What does it mean to simplify a quotient with a real number $a>1?

Simplifying a quotient with a real number $a>1 means to reduce the fraction to its simplest form by dividing both the numerator and denominator by the largest possible common factor.

What is the first step in simplifying a quotient with a real number $a>1?

The first step is to find the largest possible common factor between the numerator and denominator. This can be done by finding the prime factorization of both numbers and identifying the common factors.

Why is it important to simplify a quotient with a real number $a>1?

Simplifying a quotient with a real number $a>1 makes the fraction easier to work with and understand. It also helps to identify any patterns or relationships between the numerator and denominator.

Can a quotient with a real number $a>1$ be simplified further?

Yes, a quotient with a real number $a>1$ can always be simplified further as long as the numerator and denominator have a common factor. It is important to always check for further simplification to ensure the fraction is in its simplest form.

How can simplifying a quotient with a real number $a>1$ be useful in real-life situations?

Simplifying a quotient with a real number $a>1$ can be useful in many real-life situations such as calculating proportions, solving equations, and converting measurements. It can also help in understanding and visualizing data in fields such as science, finance, and engineering.

Similar threads

Replies
3
Views
2K
Replies
2
Views
798
Replies
1
Views
994
Replies
142
Views
8K
Replies
41
Views
1K
Replies
4
Views
871
Replies
5
Views
2K
Replies
15
Views
1K
Back
Top