MHB Simplifying a Trigonometric Expression

AI Thread Summary
The discussion focuses on simplifying the trigonometric expression $$\frac{\cot^3\left({y}\right)-\tan^3\left({y}\right)}{\sec^2\left({y}\right)+\cot^2\left({y}\right)}$$ to show that it equals $$2\cot\left({2y}\right)$$. The first contributor uses the difference of cubes formula and trigonometric identities to derive the result, demonstrating that $$\cot y - \tan y$$ simplifies to $$2\cot 2y$$. Another participant shares an alternative approach involving various trigonometric identities, ultimately reaching the same conclusion. The use of LaTeX is appreciated for clarity in presenting the mathematical steps. Overall, the thread highlights effective methods for simplifying complex trigonometric expressions.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$$\frac{\cot^3\left({y}\right)-\tan^3\left({y}\right)}
{\sec^2\left({y}\right)+\cot^2\left({y}\right)}
=2\cot\left({2y}\right)$$

I tried the LHS but could get it to reduce.
 
Last edited:
Mathematics news on Phys.org
Hi Karush,

If you use the difference of cubes formula $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$ with $a = \cot y$ and $b = \tan y$, you get

$$\cot^3 y - \tan^3 y = (\cot y - \tan y)(\cot^2 y + \cot y \tan y + \tan^2 y) = (\cot y - \tan y)(\cot^2 y + 1 + \tan^2 y)$$

$$= (\cot y - \tan y)(\cot^2 y + \sec^2 y)$$

In the last step, the identity $1 + \tan^2 y = \sec^2 y$ was used.

Now

$$\cot y - \tan y = \frac{\cos y}{\sin y} - \frac{\sin y}{\cos y} = \frac{\cos^2 y - \sin^2 y}{\sin y \cos y} = \frac{\cos 2y}{(1/2)\sin 2y} = 2\cot 2y$$

Therefore

$$\frac{\cos^3 y - \tan^3 y}{\sec^2 y + \cot^2 y} = \frac{(2\cot 2y)(\cot^2 y + \sec^2 y)}{\sec^2 y + \cot^2 y} = 2\cot 2y,$$

as desired.
 
wow that is awesome
I saw another solution to this but it got way to busy with mega steps
and not in latex

this is much more useful and comprehensive

thanks
K
 
Another approach:

$$\sin^2x+\cos^2x=1\Rightarrow1+\cot^2x=\csc^2x$$

$$\sin^2x+\cos^2x=1\Rightarrow\tan^2x+1=\sec^2x$$

$$\tan2x=\dfrac{\sin2x}{\cos2x}=\dfrac{2\sin x\cos x}{2\cos^2x-1}=\dfrac{2\tan x}{2-\sec^2x}=\dfrac{2\tan x}{2-1-\tan^2x}=\dfrac{2\tan x}{1-\tan^2x}$$

$$\cot2x=\dfrac{1-\tan^2x}{2\tan x}=\dfrac{\cot^2x-1}{2\cot x}\Rightarrow2\cot2x=\dfrac{\cot^2x-1}{\cot x}$$

$$\dfrac{\cot^3y-\tan^3y}{\sec^2y+\cot^2y}\cdot\dfrac{\cot y}{\cot y}=\dfrac{\cot^4y-\tan^2y}{(\sec^2y+\cot^2y)\cot y}$$

$$(\sec^2y+\cot^2y)(\cot^2y-1)=\csc^2y+\cot^4y-\sec^2y-\cot^2y=\csc^2y+\cot^4y-\tan^2y-1-\csc^2y+1$$
$$=\cot^4y-\tan^2y$$

hence

$$\dfrac{\cot^3y-\tan^3y}{\sec^2y+\cot^2y}=\dfrac{(\sec^2y+\cot^2y)(\cot^2y-1)}{(\sec^2y+\cot^2y)\cot y}=\dfrac{\cot^2y-1}{\cot y}=2\cot2y$$
 
Wow thank you,

That gave me some more insight hp how to do some other problems.

I'll b be posting some more

I really appreciate the latex really a headache without it

Do you cut and paste l latex?
 
karush said:
Do you cut and paste latex?

Sometimes. I usually copy and paste. :)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Back
Top