Simplifying Basic Trig: Use Identities

  • Thread starter FAT
  • Start date
  • Tags
    Trig
In summary, the conversation discusses using basic identities to simplify a trigonometric function with fractions and the use of definitions for csc(x), sec(x), and tan(x). The suggested approach is to rewrite everything in terms of sin(x) and cos(x) and then simplify.
  • #1
FAT
1
0
okay so I need help with this. Directions say: "Use the basic identities to simplify to a basic trig function"

Tanx + Tanx
csc(squared)x + sec(squared)x


The lines are fractions. tanx/scs(squared)x for example. I need help with this thanks
 
Physics news on Phys.org
  • #2
A lot of people define csc(x) as 1/sin(x) and sec(x) as 1/cos(x). Furthermore, some people even define tan(x) as sin(x)/cos(x). Does this help you?
 
  • #3
FAT said:
okay so I need help with this. Directions say: "Use the basic identities to simplify to a basic trig function"

Tanx + Tanx
csc(squared)x + sec(squared)x


The lines are fractions. tanx/scs(squared)x for example. I need help with this thanks
It is not at all clear what you mean. Since you have "+" both above and below the fractionline I would have interpreted that as
[tex]\frac{tan x+ tan x}{csc^2 x+ sec^2 x}[/tex]
but then the numerator is obviously 2tan x.

Apparently you mean
[tex]\frac{tan x}{csc^2 x}+ \frac{tan x}{sec^2 x}[/tex]
As ZioX said, rewrite everything in terms of sin x and cos x and simplify.
(It might be easier to factor tan x out of that and concentrate on what's left!)
 

FAQ: Simplifying Basic Trig: Use Identities

What are trigonometric identities?

Trigonometric identities are mathematical equations that involve trigonometric functions and are true for all values of the variables involved.

Why do we need to simplify basic trig using identities?

Simplifying basic trig using identities can make complex trigonometric expressions easier to work with and can help in solving more advanced trigonometry problems.

How do I know which identity to use?

You can determine which identity to use by looking at the given expression and identifying which trigonometric functions are present. Then, you can use the appropriate identity to simplify the expression.

Can trigonometric identities be proven?

Yes, trigonometric identities can be proven using algebraic manipulations and the fundamental properties of trigonometric functions.

Are there any tips for simplifying basic trig using identities?

One tip is to always start by looking for common factors or simplifying terms within the expression. Another tip is to practice and become familiar with the most commonly used identities to make the process easier.

Similar threads

Replies
22
Views
2K
Replies
29
Views
2K
Replies
5
Views
2K
Replies
1
Views
1K
Replies
1
Views
1K
Back
Top