The expression simplifies to $\left(1+ \frac{\frac{1}{x}}{1+\frac{1}{x}}\right)\times\left(1+ \frac{\frac{1}{x}}{1- \frac{1}{x}}\right)$ by first transforming the fractions to $\frac{1}{x+1}$ and $\frac{1}{x-1}$. This leads to $\left(1+ \frac{1}{1+x}\right)\times\left(1+ \frac{1}{x-1}\right)$. Adding the fractions results in $\frac{x+2}{1+x}$ and $\frac{x}{x-1}$, respectively. The final product simplifies to $\frac{x^2 + 2x}{x^2 - 1}$.