Simulating Closed Timelike Curves through Quantum Optics

In summary, the paper experimentsally simulates Closed Timelike Curves (CTC) through quantum optics experiment. Since I have no experience/background in this, I found it hard to understand how exactly the CTC is implemented in the circuit.
  • #1
phys_student1
106
0
This paper experimentally simulates Closed Timelike Curves (CTC) through quantum optics experiment. Since I have no experience/background in this, I found it hard to understand how exactly the CTC is implemented in the circuit. [Note: I do understand QM, so no need to explain this].
 
Physics news on Phys.org
  • #2
Is the question not clear?
 
  • #3
phys_student1 said:
Is the question not clear?

It's a pretty sophisticated setup with state of the art theory involved.
 
  • #4
I am not exactly sure what you are asking. Is it about the protocol used or the actual optical setup needed?

In a nutshell: It works a bit like the old joke about how a stonemason creates a statue of a lion: You start with a huge stone cube and just remove everything which does not look like a lion.

The equivalent here is postselection. In quantum teleportation, Alice tries to get an unknown state over to Bob, but they need to exchange one classical bit of information in order to do so: This is the unitarity transformation Bob needs to apply to his side. Now there may be a certain probability that this unitary transformation is simply identity, so Bob does not need to do anything to get the correct state. So in some sense, Bob already had the state which should be teleported to him before the teleportation took place. Postselection now means that the experimentalists just pick all the measurement runs, where the unitary transformation Bob has to apply indeed was the identity operation. This is not controllable, so they just throw many runs of the experiment away - the stonemason analogy so to speak. As in these post-selected cases, the state was already there before the teleportation took place, the authors consider it as analogous to a CTC.

When they try to create a paradoxical situation (grandfather paradox), they just find that it does not work. If they try to end up in a paradoxical situation, the probability that the unitary transformation Bob needs to apply to end up in that state just goes to zero and the paradox will never be realized.

By the way, the journal article in PRL is somewhat better and more precise than the article on ArXiv you linked to. In my opinion the connection to CTC is somewhat handwaving.
 
  • Like
Likes 1 person
  • #5
Cthugha, thank you! That was very clear.

I agree that the connection to CTC is not really a rigorous one, which is why I was confused while reading the paper.

P.S. I have (in my university) subscription to APS journals, but I prefer arXiv because some members don't have access.
 

FAQ: Simulating Closed Timelike Curves through Quantum Optics

1. What is the concept of "closed timelike curves" in the context of quantum optics?

Closed timelike curves refer to a theoretical concept in which an object can travel back in time along a closed path in spacetime. This idea is based on the concept of time travel and is often explored in science fiction. In the context of quantum optics, closed timelike curves are studied as a way to potentially manipulate the flow of time using quantum mechanical effects.

2. How can quantum optics be used to simulate closed timelike curves?

In quantum optics, scientists can manipulate the behavior of particles at the quantum level. By using techniques such as quantum entanglement and superposition, researchers can potentially create a simulation of closed timelike curves by manipulating the flow of time for these particles.

3. What are the potential applications of simulating closed timelike curves through quantum optics?

If successful, simulating closed timelike curves through quantum optics could have implications for time travel, communication, and quantum computing. It could also help researchers better understand the nature of time and the behavior of particles at the quantum level.

4. Are there any challenges or limitations to simulating closed timelike curves through quantum optics?

There are several challenges and limitations to consider when attempting to simulate closed timelike curves through quantum optics. These include the need for precise control and manipulation of quantum particles, as well as the potential for paradoxes and violations of causality if time travel is achieved.

5. Is there any current research or progress being made in this area?

Yes, there is ongoing research and progress in the field of simulating closed timelike curves through quantum optics. Some recent studies have shown promising results in manipulating the flow of time for quantum particles, but further research is still needed to fully understand this concept and its potential applications.

Similar threads

Back
Top